
Continuous Computational Social Choice

Martin Koutecký
November 6th, 2025 AGATE Kick-off



Continuous Computational Social Choice

• Social choice: voting, matching, allocations, ...

• Computational SoC: algorithms and hardness
• Traditionally: discrete agents ⇝ hard
• New perspective:

• Focus on agent types
• Forget individuals ⇝

continuous quantities ⇝
efficient (?)

• Analogous to: Mean-field Theory

• Statistical Physics
• Mean-field Game Theory
• “Geometry of Voting”
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Case Study: Voting & Bribery

Candidates: ▲, ■, and ⋆.
People: preference (e.g. ■ ≻ ▲ ≻⋆)
Society: how many people of which type ⇒ Society Graph:

▲ ≻ ■ ≻ ⋆

type 1; n1 = 21 ■ ≻ ▲ ≻ ⋆

type 2; n2 = 10

■ ≻ ⋆ ≻ ▲

type 3; n3 = 10

⋆ ≻ ■ ≻ ▲

type 4; n4 = 21

⋆ ≻ ▲ ≻ ■

type 5; n5 = 42

▲ ≻ ⋆ ≻ ■

type 6; n6 = 42

Edges ≡ swap distance 1.
Society n = (21, 10, 10, 21, 42, 42)

Continuous Society:
µ = n

∥n∥1
≈ (.14, .07, .07, .14, .29, .29)

Voting rule: given a society, who
should win?

• Plurality = most times first
• Condorcet = beats everyone

head-to-head
• Many others (Borda, Kemeny,

Dodgson, Approval, STV)
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Young Voting

• Condorcet-consistent rules ≈ “candidate
closest to being Condorcet should win”.

• Young Score: #voter deletions to
become Condorcet

• c with smallest YS is Young Winner.
• Harder than NP-complete:

PNP
|| -complete

• Society Continuum: Polytime! (Linear
Programming)

ni = #voters of type i;
xi = #deleted voters of type i

min
∑

i
xi

0 ≤ xi ≤ ni i ∈ [τ ]∑
i:c⋆>ic′

(ni − xi) >
∑

i:c′>ic⋆
(ni − xi) ∀c′ ̸= c⋆

x ∈
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Young Voting: Preflib (Political Elections)

On political elections of PrefLib (n = 364):
• Young Score vs Young Score∞

always give the same ranking
• On n = 315 elections both scores agree

completely
• On remaining 49 elections never differ

by more than 12, or 0.14% in relative
terms.
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Young Voting: Preflib (All Elections)

On all elections of PrefLib
(n = 8482 elections):

• Young Score vs
Young Score∞ give the
same ranking on 97%
instances

• On remaining elections
does not differ much
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Dodgson Voting

• Condorcet-consistent rules ≈ “candidate
closest to being Condorcet should win”.

• Dodgson Score: #adjacent swaps to
become Condorcet

• c with smallest DS is Dodgson Winner.
• Harder than NP-complete:

PNP
|| -complete

• Society Continuum: Polytime! (LP)
• We’re lucky: shifts up suffice, o/w

Θ(m!) “output types” to consider

ni = #voters of type i;
xij = #voters of type i with j shifts up of ⋆

min
∑

i

∑
j

j · xij∑
j

xij = ni i ∈ [τ ]

∑
t:c⋆>tc′

yt >
∑

t:c′>ic⋆
yt ∀c′ ̸= c⋆

xij ∈
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Kemeny Voting

• Kemeny ranking ≈ swap-distance
average of all voters

• Specifically: ranking ≻ minimizing
total swap distance from all voters.

• c is Kemeny winner if top of some KR
• Harder than NP-complete:

PNP
|| -complete

• Society Continuum: Still hard!

Proof Sketch:

• Each voter type ≡ ranking + weight
• Kemeny Ranking is weighted average of

voter types
• : Down-scaling weights by a scalar

doesn’t change the average!
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Bribing

▲ ≻ ■ ≻ ⋆

type 1; n1 = 21 ■ ≻ ▲ ≻ ⋆

type 2; n2 = 10

■ ≻ ⋆ ≻ ▲

type 3; n3 = 10

⋆ ≻ ■ ≻ ▲

type 4; n4 = 21

⋆ ≻ ▲ ≻ ■

type 5; n5 = 42

▲ ≻ ⋆ ≻ ■

type 6; n6 = 42

society n = (21, 10, 10, 21, 42, 42)

“Bribery:” cheapest way to move voters s.t. ■ wins Plurality? (unit cost per swap)
Actually: Bribery, $Bribery, Shift Bribery, Swap Bribery, CCDV, etc.
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Bribing

▲ ≻ ■ ≻ ⋆

n′
1 = 21−15 ■ ≻ ▲ ≻ ⋆

n′
2 = 10+15

■ ≻ ⋆ ≻ ▲

n′
3 = 10+15

⋆ ≻ ■ ≻ ▲

n′
4 = 21−15

⋆ ≻ ▲ ≻ ■

n′
5 = 42

▲ ≻ ⋆ ≻ ■

n′
6 = 42

15 15

society n = (21, 10, 10, 21, 42, 42)
move m = (0, . . . , 0,+15,+15, 0, . . . , 0) (arc space of complete oriented graph)

change ∆ = ∆(m) = (−15,+15,+15,−15, 0, 0)

“Bribery:” cheapest way to move voters s.t. ■ wins Plurality? (unit cost per swap)

Actually: Bribery, $Bribery, Shift Bribery, Swap Bribery, CCDV, etc.
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Borda-•-Bribery

• Borda’s Rule: give m − 1 points to 1st candidate, m − 2 to 2nd, etc.

• Shift-Bribery∞: easy (LP with O(τm) variables)
• Constructive Control by Adding/Deleting Voters∞: ditto
• Unit cost Swap Bribery∞: easy (reduces to Shift Bribery∞)
• Bribery, $Bribery∞: easy-ish (Configuration LP with easy separation problem)

• LP with τm! variables but m + τ constraints
• Its dual has m + τ vars but many constraints
• Separation =⇒ Optimization
• Here, separation = sorting

• General cost Swap Bribery∞: ...probably hard?
• “Potentials-cost” Swap Bribery∞: ...probably easy?

• costs like “swapping candidates initially at distance k costs k”
• separation problem ≡ special case of Linear Ordering Problem (NP-c)
• For our costs, optimal face of a known LO relaxation is integral!
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