Continuous Computational Social Choice

Martin Koutecky
November 6th, 2025 AGATE Kick-off

CHARLES UNIVERSITY
Faculty of mathematics
and physics

CSI

IUUK

K GACR

CZECH SCIENCE FOUNDATION

Continuous Computational Social Choice

= Social choice: voting, matching, allocations, ...

Continuous Computational Social Choice

= Social choice: voting, matching, allocations, ...

= Computational SoC: algorithms and hardness

Continuous Computational Social Choice

= Social choice: voting, matching, allocations, ...
= Computational SoC: algorithms and hardness

= Traditionally: discrete agents ~» hard

i

Continuous Computational Social Choice

= Social choice: voting, matching, allocations, ...
= Computational SoC: algorithms and hardness

= Traditionally: discrete agents ~~ hard

New perspective:
= Focus on agent types £

1

Continuous Computational Social Choice

= Social choice: voting, matching, allocations, ...

= Computational SoC: algorithms and hardness 56%
()

= Traditionally: discrete agents ~~ hard

New perspective:
= Focus on agent types
= Forget individuals ~~ 31%
continuous quantities ~~
efficient (7)

13%

Continuous Computational Social Choice

= Social choice: voting, matching, allocations, ...

= Computational SoC: algorithms and hardness 56%
= Traditionally: discrete agents ~» hard
= New perspective:
= Focus on agent types
= Forget individuals ~~ 31%
continuous quantities ~~
efficient (7)
= Analogous to: Mean-field Theory
= Statistical Physics
= Mean-field Game Theory 13%
= “Geometry of Voting”

Case Study: Voting & Bribery

Candidates: A, B, and .
People: preference (e.g. B~ A > %)
Society: how many people of which type = Society Graph:

Case Study: Voting & Bribery

Candidates: A, H, and *.
People: preference (e.g. B~ A > %)
Society: how many people of which type = Society Graph:

type 2; np =10 type 3; n3 =10

type 1; n; =21 WA=k W Kk-a type 4; ng =21

type 6; ng = 42 type 5; ns = 42

A>*>IH*>A>I

Edges = swap distance 1.
Society n = (21,10, 10,21, 42,42)

Case Study: Voting & Bribery

Candidates: A, W, and .
People: preference (e.g. Bl > A > %)

Society: how many people of which type = Society Graph:
Voting rule: given a society, who

type 2; np =10 type 3; n3 =10 .
should win?

type 1; n; =21 WA=k W Kk-a type 4; ng =21 . . .
= Plurality = most times first

type 6; ng = 42 type 5; ns = 42

= Condorcet = beats everyone

Lox-E H roArE head-to-head

= Many others (Borda, Kemeny,
Dodgson, Approval, STV)

Edges = swap distance 1.
Society n = (21,10, 10,21, 42,42)

Case Study: Voting & Bribery

Candidates: A, W, and .
People: preference (e.g. Bl > A > %)

Society: how many people of which type = Society Graph:

Voting rule: given a society, who
type 2; np = 10 type 3; n3 = 10 .
should win?
type 1; n; =21 WA=k W Kk-a type 4; ng =21 . . .
= Plurality = most times first

type 6; ng = 42 type 5; ns = 42

= Condorcet = beats everyone
* - N *

il H el head-to-head

= Many others (Borda, Kemeny,
Dodgson, Approval, STV)

Edges = swap distance 1.
Society n = (21,10, 10,21, 42,42)
Continuous Society:
= ||: ~ (.14,.07,.07, .14, .29, .29)

[

Young Voting

= Condorcet-consistent rules ~ “candidate
closest to being Condorcet should win".

Young Voting

= Condorcet-consistent rules ~ “candidate
closest to being Condorcet should win".

= Young Score: #voter deletions to
become Condorcet

Young Voting

= Condorcet-consistent rules ~ “candidate
closest to being Condorcet should win".

= Young Score: #voter deletions to
become Condorcet

= ¢ with smallest YS is Young Winner.

Young Voting

= Condorcet-consistent rules ~ “candidate
closest to being Condorcet should win".

= Young Score: #voter deletions to
become Condorcet

= ¢ with smallest YS is Young Winner.

= Harder than NP-complete:

Pﬁ’P—compIete

Young Voting

= Condorcet-consistent rules =~ “candidate M = 7#voters of type i

closest to being Condorcet should win”. X = ##deleted voters of type
= Young Score: #voter deletions to _— in
become Condorcet i
= ¢ with smallest YS is Young Winner. 0<x;<nj i€ 7]
= Harder than NP-complete: Z (ni — x;) > Z (nj—x;) Vd #c*
Pﬁ’P—compIete el i/ >ic*

Young Voting

= Condorcet-consistent rules =~ “candidate M = 7#voters of type i

closest to being Condorcet should win”. X = ##deleted voters of type
= Young Score: #voter deletions to _— in
become Condorcet i
= ¢ with smallest YS is Young Winner. 0<x;<nj i€ 7]
= Harder than NP-complete: Z (ni — x;) > Z (nj—x;) Vd #c*
Pﬁ’P—compIete el i/ >ic*
= Society Continuum: Polytime! (Linear x € R”

Programming)

Young Voting: Preflib (Political Elections)

315

On political elections of PrefLib (n = 364):

= YOUNG SCORE vs YOUNG SCOREq,
always give the same ranking 200 1

= On n = 315 elections both scores agree

Count

completely

= On remaining 49 elections never differ 1004

by more than 12, or 0.14% in relative

terms. 50 -

Young Voting: Preflib (All Elections)

Proportion of elections with norms < 0.001

On all elections of PrefLib 270\
(n = 8482 elections): o
* YOUNG SCORE vs 8218

YOUNG SCORE give the

Histogram for elections with norm > 0.001

same ranking on 97% 2
200
instances
3‘150
= On remaining elections 5 0
(<4
does not differ much 5 5

02222 0100000000001
0 - - . . . :
0 20 40 60 80 100 120
Value of ¢; norm

Dodgson Voting

= Condorcet-consistent rules ~ “candidate
closest to being Condorcet should win”.

= Dodgson Score: #adjacent swaps to
become Condorcet

= ¢ with smallest DS is Dodgson Winner.

= Harder than NP-complete:
P"?’P-complete

Dodgson Voting

= Condorcet-consistent rules ~ “candidate M = ##voters of type i;

closest to being Condorcet should win”. ~ Xij = #voters of type i with j shifts up of x
= Dodgson Score: #adjacent swaps to min Z Zj'xij
become Condorcet P
= ¢ with smallest DS is Dodgson Winner. ZXU =n; ie[r]
= Harder than NP-complete: J
P"?’P-complete Z Vi > Z Vi Vd #£ &
t:c*>¢c t:c/>jc*

Xij € N

Dodgson Voting

= Condorcet-consistent rules ~ “candidate M = ##voters of type i;

closest to being Condorcet should win”. ~ Xij = #voters of type i with j shifts up of x
= Dodgson Score: #adjacent swaps to min Z Zj'xij
become Condorcet P
= ¢ with smallest DS is Dodgson Winner. ZXU =n; ie[r]
= Harder than NP-complete: J
P"?’P-complete Z Ve > Z Vi Vd #£ &
t:c*>¢c t:c/>jc*

= Society Continuum: Polytime! (LP)

Dodgson Voting

= Condorcet-consistent rules ~ “candidate M = ##voters of type i;

closest to being Condorcet should win”. ~ Xij = #voters of type i with j shifts up of x

= Dodgson Score: #adjacent swaps to . Z Zj e
ij
become Condorcet T

= ¢ with smallest DS is Dodgson Winner. ZXU =n; ie[r]
= Harder than NP-complete: J
NP *
PH -complete t.zdyt > t.; *yt Vd # ¢
= Society Continuum: Polytime! (LP) oo e
Xij € Rzo

» We're lucky: shifts up suffice, o/w
©(m!) “output types" to consider

Kemeny Voting

= Kemeny ranking = swap-distance
average of all voters

Kemeny Voting

= Kemeny ranking = swap-distance
average of all voters

= Specifically: ranking = minimizing
total swap distance from all voters.

Kemeny Voting

= Kemeny ranking = swap-distance
average of all voters

= Specifically: ranking = minimizing
total swap distance from all voters.

= cis Kemeny winner if top of some KR

Kemeny Voting

= Kemeny ranking = swap-distance
average of all voters

= Specifically: ranking = minimizing
total swap distance from all voters.
= cis Kemeny winner if top of some KR

= Harder than NP-complete:
Pﬁlp-complete

Kemeny Voting

= Kemeny ranking = swap-distance
average of all voters

= Specifically: ranking = minimizing
total swap distance from all voters.

= cis Kemeny winner if top of some KR

= Harder than NP-complete:
Pﬁlp-complete

= Society Continuum: Still hard!

Kemeny Voting

= Kemeny ranking ~ swap-distance Proof Sketch:
average of all voters = Each voter type = ranking + weight

= Specifically: ranking = minimizing
total swap distance from all voters.

= cis Kemeny winner if top of some KR

= Harder than NP-complete:
Pﬁlp-complete

= Society Continuum: Still hard!

Kemeny Voting

= Kemeny ranking ~ swap-distance Proof Sketch:
average of all voters = Each voter type = ranking + weight

= Specifically: ranking > minimizing = Kemeny Ranking is weighted average of
total swap distance from all voters. voter types

= cis Kemeny winner if top of some KR

= Harder than NP-complete:
Pﬁlp-complete

= Society Continuum: Still hard!

Kemeny Voting

= Kemeny ranking ~ swap-distance Proof Sketch:
average of all voters = Each voter type = ranking + weight

= Specifically: ranking = minimizing = Kemeny Ranking is weighted average of
total swap distance from all voters. voter types

= cis Kemeny winner if top of some KR . : Down-scaling weights by a scalar

= Harder than NP-complete: doesn’t change the average!

Pﬁlp-complete

= Society Continuum: Still hard!

Bribing

type 2; np = 10 type 3; n3 =10
B> A>% H>- %> A
type 1; n1:21/ \type 4: ng =21
A>_.>_*\type6;n6:42 type5;n5:42/*>_.>-A
A>% >0 *x >~ A>0

society n = (21,10, 10, 21,42, 42)

Bribing

type 2; np =10 type 3; n3 = 10

[Bk A

type 1; m = 21/ \type 4: ng =21
A>_.>_*\type6;n6:42 type5;n5:42/*>_.>-A
A>%>~N *x >~ A>0
society n = (21,10, 10, 21,42, 42)
“Bribery:” cheapest way to move voters s.t. l wins Plurality? (unit cost per swap
p Yy y

Bribing

nf = 10415 n} = 10+15
n, =21-15 Wi= A =% W=k A n, = 21-15
1 15 15 /A
/ \
A% -0 * >~ A >0
society n = (21, 10, 10, 21, 42, 42)
movem = (0, ..., 0,+15,+15,0,..., 0) (arc space of complete oriented graph)
change A = A(m) = (—15, +15,+15,—15,0,0)

“Bribery:” cheapest way to move voters s.t. B wins Plurality? (unit cost per swap)

Bribing

ny, =25 ny =25
=6 - A>% B> %> A 0 =6
1 4 —
/ \
A>—I>—*\ nj = 42 nj = 42 /*>—I>—A
A>-%>-1 * >~ A >0
n’ =n+ A with A = (—15,+15,+15,—15,0,0)
W wins: 48 = n} 4+ ng = n) + nf < n} + n} =50
“Bribery:” cheapest way to move voters s.t. B wins Plurality? (unit cost per swap)

nz =25
B~ - A - n, =6
_ * -0~ A
ng =42 /
* >~ A >0

n’ =n+ A with A = (—15,+15,+15,—15,0,0)
B wins: 48 = n} 4 ng = n) + nf < n} + n} =50

n, =6 - A>-%
A~ N>~
* n6:42
A-% -0
“Bribery:”

cheapest way to move voters s.t. B wins Plurality? (unit cost per swap)
Actually: BRIBERY, $BRIBERY, SHIFT BRIBERY, SWAP BRIBERY, CCDV, etc.

Borda-e-Bribery

= Borda’s Rule: give m — 1 points to 1st candidate, m — 2 to 2nd, etc.

Borda-e-Bribery

= Borda’s Rule: give m — 1 points to 1st candidate, m — 2 to 2nd, etc.

= SHIFT-BRIBERY: easy (LP with O(7m) variables)

Borda-e-Bribery

= Borda’s Rule: give m — 1 points to 1st candidate, m — 2 to 2nd, etc.
= SHIFT-BRIBERY: easy (LP with O(7m) variables)
» CONSTRUCTIVE CONTROL BY ADDING/DELETING VOTERS: ditto

Borda-e-Bribery

= Borda’s Rule: give m — 1 points to 1st candidate, m — 2 to 2nd, etc.
= SHIFT-BRIBERY: easy (LP with O(7m) variables)

» CONSTRUCTIVE CONTROL BY ADDING/DELETING VOTERS: ditto
= Unit cost SWAP BRIBERY: easy (reduces to SHIFT BRIBERY)

Borda-e-Bribery

= Borda’s Rule: give m — 1 points to 1st candidate, m — 2 to 2nd, etc.
= SHIFT-BRIBERY: easy (LP with O(7m) variables)
» CONSTRUCTIVE CONTROL BY ADDING/DELETING VOTERS: ditto

= Unit cost SWAP BRIBERY: easy (reduces to SHIFT BRIBERY)
» BRIBERY, $BRIBERY: easy-ish (Configuration LP with easy separation problem)

Borda-e-Bribery

= Borda’s Rule: give m — 1 points to 1st candidate, m — 2 to 2nd, etc.
= SHIFT-BRIBERY: easy (LP with O(7m) variables)
» CONSTRUCTIVE CONTROL BY ADDING/DELETING VOTERS: ditto

= Unit cost SWAP BRIBERY: easy (reduces to SHIFT BRIBERY)
» BRIBERY, $BRIBERY: easy-ish (Configuration LP with easy separation problem)

= LP with 7m! variables but m + 7 constraints

Borda-e-Bribery

= Borda’s Rule: give m — 1 points to 1st candidate, m — 2 to 2nd, etc.
= SHIFT-BRIBERY: easy (LP with O(7m) variables)
» CONSTRUCTIVE CONTROL BY ADDING/DELETING VOTERS: ditto

= Unit cost SWAP BRIBERY: easy (reduces to SHIFT BRIBERY)

» BRIBERY, $BRIBERY: easy-ish (Configuration LP with easy separation problem)
= LP with 7m! variables but m + 7 constraints
= |Its dual has m + 7 vars but many constraints

Borda-e-Bribery

= Borda’s Rule: give m — 1 points to 1st candidate, m — 2 to 2nd, etc.

= SHIFT-BRIBERY: easy (LP with O(7m) variables)

» CONSTRUCTIVE CONTROL BY ADDING/DELETING VOTERS: ditto

= Unit cost SWAP BRIBERY: easy (reduces to SHIFT BRIBERY)

» BRIBERY, $BRIBERY: easy-ish (Configuration LP with easy separation problem)
= LP with 7m! variables but m 4 7 constraints

= |Its dual has m + 7 vars but many constraints
= Separation — Optimization

Borda-e-Bribery

= Borda’s Rule: give m — 1 points to 1st candidate, m — 2 to 2nd, etc.

= SHIFT-BRIBERY: easy (LP with O(7m) variables)

» CONSTRUCTIVE CONTROL BY ADDING/DELETING VOTERS: ditto

= Unit cost SWAP BRIBERY: easy (reduces to SHIFT BRIBERY)

» BRIBERY, $BRIBERY: easy-ish (Configuration LP with easy separation problem)
= LP with 7m! variables but m + 7 constraints
= |Its dual has m + 7 vars but many constraints

= Separation — Optimization
= Here, separation = sorting

Borda-e-Bribery

= Borda’s Rule: give m — 1 points to 1st candidate, m — 2 to 2nd, etc.

= SHIFT-BRIBERY: easy (LP with O(7m) variables)

» CONSTRUCTIVE CONTROL BY ADDING/DELETING VOTERS: ditto

= Unit cost SWAP BRIBERY: easy (reduces to SHIFT BRIBERY)

» BRIBERY, $BRIBERY: easy-ish (Configuration LP with easy separation problem)
= LP with 7m! variables but m + 7 constraints
= |Its dual has m + 7 vars but many constraints

= Separation — Optimization
= Here, separation = sorting

» General cost SWAP BRIBERY : ...probably hard?

Borda-e-Bribery

= Borda’s Rule: give m — 1 points to 1st candidate, m — 2 to 2nd, etc.
= SHIFT-BRIBERY: easy (LP with O(7m) variables)
» CONSTRUCTIVE CONTROL BY ADDING/DELETING VOTERS: ditto
= Unit cost SWAP BRIBERY: easy (reduces to SHIFT BRIBERY)
» BRIBERY, $BRIBERY: easy-ish (Configuration LP with easy separation problem)
s LP with 7m! variables but m 4 7 constraints
= |Its dual has m + 7 vars but many constraints
= Separation — Optimization
= Here, separation = sorting
» General cost SWAP BRIBERY : ...probably hard?
= “Potentials-cost” SWAP BRIBERY s ...probably easy?

Borda-e-Bribery

= Borda’s Rule: give m — 1 points to 1st candidate, m — 2 to 2nd, etc.
= SHIFT-BRIBERY: easy (LP with O(7m) variables)
» CONSTRUCTIVE CONTROL BY ADDING/DELETING VOTERS: ditto
= Unit cost SWAP BRIBERY: easy (reduces to SHIFT BRIBERY)
» BRIBERY, $BRIBERY: easy-ish (Configuration LP with easy separation problem)
s LP with 7m! variables but m 4 7 constraints
= |Its dual has m + 7 vars but many constraints
= Separation — Optimization
= Here, separation = sorting
» General cost SWAP BRIBERY : ...probably hard?
= “Potentials-cost” SWAP BRIBERY s ...probably easy?

= costs like “swapping candidates initially at distance k costs k"

Borda-e-Bribery

= Borda’s Rule: give m — 1 points to 1st candidate, m — 2 to 2nd, etc.
= SHIFT-BRIBERY: easy (LP with O(7m) variables)
» CONSTRUCTIVE CONTROL BY ADDING/DELETING VOTERS: ditto
= Unit cost SWAP BRIBERY: easy (reduces to SHIFT BRIBERY)
» BRIBERY, $BRIBERY: easy-ish (Configuration LP with easy separation problem)
s LP with 7m! variables but m 4 7 constraints
= |Its dual has m + 7 vars but many constraints
= Separation — Optimization
= Here, separation = sorting
» General cost SWAP BRIBERY : ...probably hard?
= “Potentials-cost” SWAP BRIBERY s ...probably easy?

= costs like “swapping candidates initially at distance k costs k"
= separation problem = special case of LINEAR ORDERING PROBLEM (NP-c)

Borda-e-Bribery

= Borda’s Rule: give m — 1 points to 1st candidate, m — 2 to 2nd, etc.
= SHIFT-BRIBERY: easy (LP with O(7m) variables)
» CONSTRUCTIVE CONTROL BY ADDING/DELETING VOTERS: ditto

= Unit cost SWAP BRIBERY: easy (reduces to SHIFT BRIBERY)
» BRIBERY, $BRIBERY: easy-ish (Configuration LP with easy separation problem)
s LP with 7m! variables but m 4 7 constraints
= |Its dual has m + 7 vars but many constraints
= Separation — Optimization
= Here, separation = sorting
» General cost SWAP BRIBERY : ...probably hard?
= “Potentials-cost” SWAP BRIBERY s ...probably easy?
= costs like “swapping candidates initially at distance k costs k"
= separation problem = special case of LINEAR ORDERING PROBLEM (NP-c)
= For our costs, optimal face of a known LO relaxation is integral!

Bottom Line

20% 53% 27%

Discrete Voters Intractable Problems Integer Tally Continuous Voter Types Fast Algorithms Continuous Tally

» Est. half relevant papers study a problem w/ natural continuous analogue

Bottom Line

20% 53% 27%

Discrete Voters Intractable Problems Integer Tally Continuous Voter Types Fast Algorithms Continuous Tally

» Est. half relevant papers study a problem w/ natural continuous analogue

= Rich and non-trivial new complexity landscape

Bottom Line

20% 53% 27%

Discrete Voters Intractable Problems Integer Tally Continuous Voter Types Fast Algorithms Continuous Tally

» Est. half relevant papers study a problem w/ natural continuous analogue
= Rich and non-trivial new complexity landscape

= Opportunity to use new tools (in ComSoC)

Bottom Line

20% 53% 27%

Discrete Voters Intractable Problems Integer Tally Continuous Voter Types Fast Algorithms Continuous Tally

Est. half relevant papers study a problem w/ natural continuous analogue
= Rich and non-trivial new complexity landscape
= Opportunity to use new tools (in ComSoC)

= May reveal where hardness is a modeling artifact

Bottom Line

20% 53% 27%

Discrete Voters Intractable Problems Integer Tally Continuous Voter Types Fast Algorithms Continuous Tally

Est. half relevant papers study a problem w/ natural continuous analogue

= Rich and non-trivial new complexity landscape

= Opportunity to use new tools (in ComSoC)

= May reveal where hardness is a modeling artifact Thank You!

