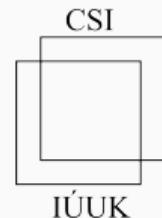


Continuous Computational Social Choice

Martin Koutecký

November 6th, 2025 AGATE Kick-off

CHARLES UNIVERSITY
Faculty of mathematics
and physics



Continuous Computational Social Choice

- **Social choice:** voting, matching, allocations, ...

Continuous Computational Social Choice

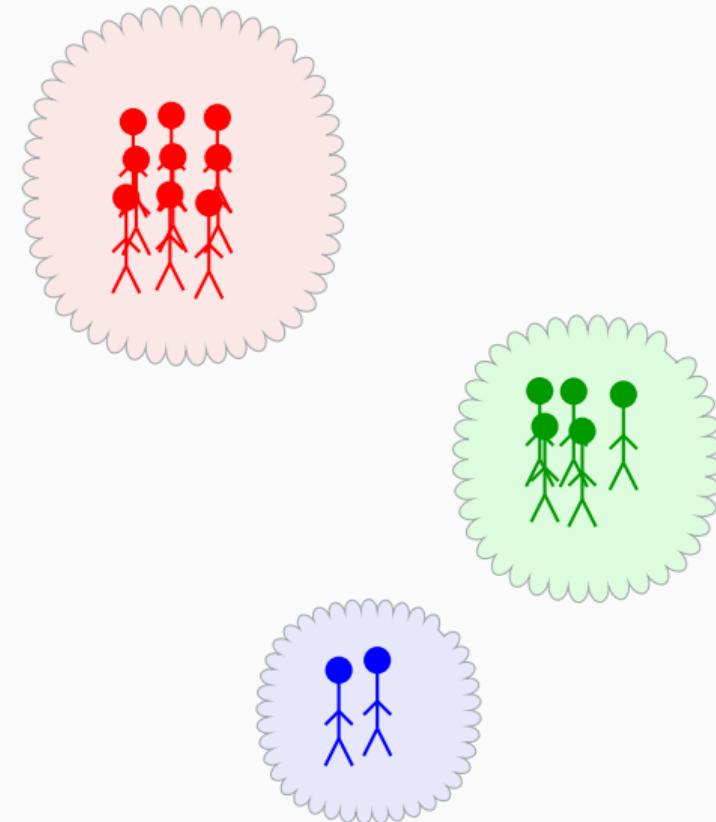
- **Social choice:** voting, matching, allocations, ...
- **Computational** SoC: algorithms and hardness

Continuous Computational Social Choice

- **Social choice:** voting, matching, allocations, ...
- **Computational SoC:** algorithms and hardness
- **Traditionally:** discrete agents \rightsquigarrow hard

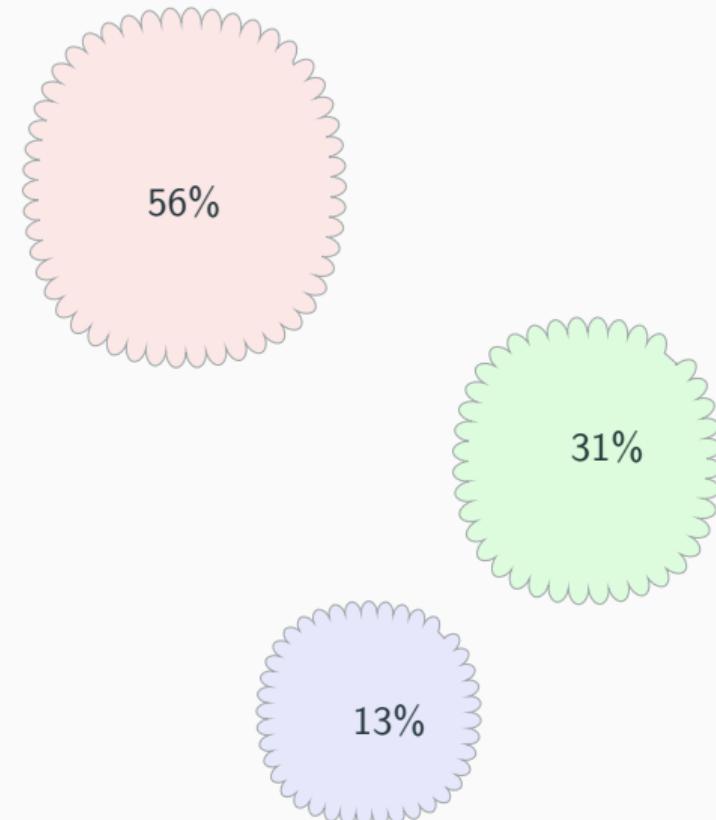
Continuous Computational Social Choice

- **Social choice:** voting, matching, allocations, ...
- **Computational SoC:** algorithms and hardness
- **Traditionally:** discrete agents \rightsquigarrow hard
- **New perspective:**
 - Focus on agent *types*



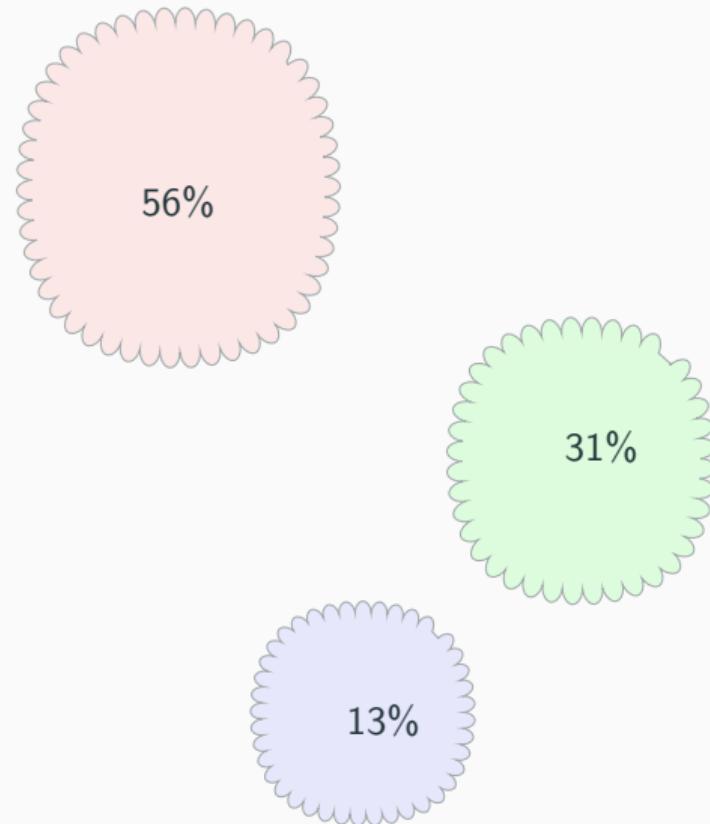
Continuous Computational Social Choice

- **Social choice:** voting, matching, allocations, ...
- **Computational SoC:** algorithms and hardness
- **Traditionally:** discrete agents \rightsquigarrow hard
- **New perspective:**
 - Focus on agent *types*
 - Forget individuals \rightsquigarrow
continuous quantities \rightsquigarrow
efficient (?)



Continuous Computational Social Choice

- **Social choice:** voting, matching, allocations, ...
- **Computational SoC:** algorithms and hardness
- **Traditionally:** discrete agents \rightsquigarrow hard
- **New perspective:**
 - Focus on agent *types*
 - Forget individuals \rightsquigarrow continuous quantities \rightsquigarrow efficient (?)
- **Analogous to:** Mean-field Theory
 - Statistical Physics
 - Mean-field Game Theory
 - “Geometry of Voting”



Case Study: Voting & Bribery

Candidates: \blacktriangle , \blacksquare , and \star .

People: preference (e.g. $\blacksquare \succ \blacktriangle \succ \star$)

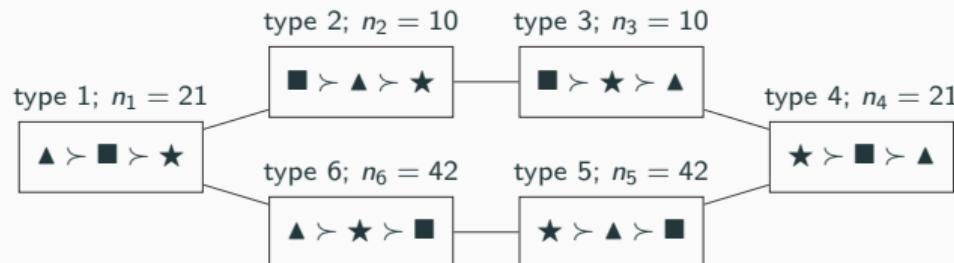
Society: how many people of which type \Rightarrow **Society Graph:**

Case Study: Voting & Bribery

Candidates: \blacktriangle , \blacksquare , and \star .

People: preference (e.g. $\blacksquare \succ \blacktriangle \succ \star$)

Society: how many people of which type \Rightarrow **Society Graph:**



Edges \equiv swap distance 1.

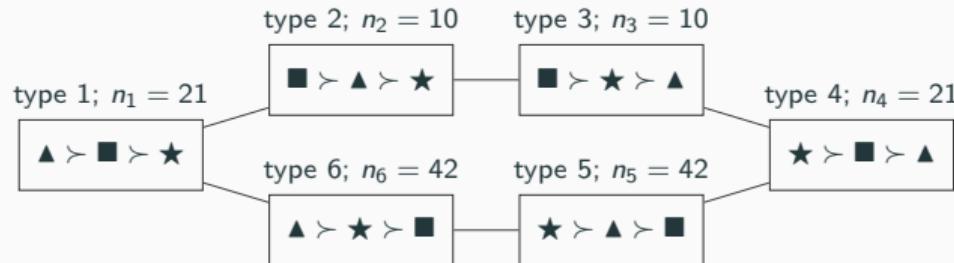
Society $\mathbf{n} = (21, 10, 10, 21, 42, 42)$

Case Study: Voting & Bribery

Candidates: \blacktriangle , \blacksquare , and \star .

People: preference (e.g. $\blacksquare \succ \blacktriangle \succ \star$)

Society: how many people of which type \Rightarrow **Society Graph:**



Edges \equiv swap distance 1.

Society $\mathbf{n} = (21, 10, 10, 21, 42, 42)$

Voting rule: given a society, *who should win?*

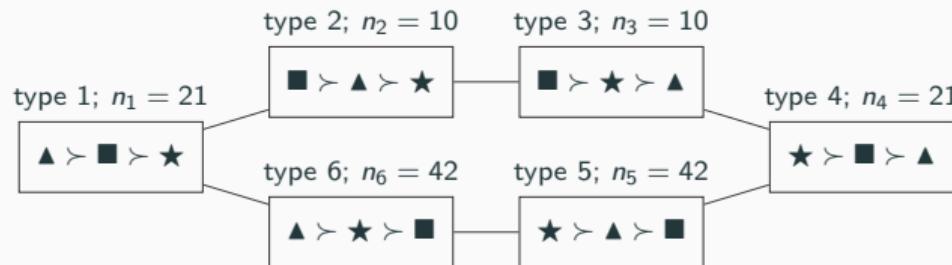
- Plurality = most times first
- Condorcet = beats everyone head-to-head
- Many others (Borda, Kemeny, Dodgson, Approval, STV)

Case Study: Voting & Bribery

Candidates: \blacktriangle , \blacksquare , and \star .

People: preference (e.g. $\blacksquare \succ \blacktriangle \succ \star$)

Society: how many people of which type \Rightarrow **Society Graph:**



Edges \equiv swap distance 1.

Society $\mathbf{n} = (21, 10, 10, 21, 42, 42)$

Continuous Society:

$$\mu = \frac{\mathbf{n}}{\|\mathbf{n}\|_1} \approx (.14, .07, .07, .14, .29, .29)$$

Voting rule: given a society, *who should win?*

- Plurality = most times first
- Condorcet = beats everyone head-to-head
- Many others (Borda, Kemeny, Dodgson, Approval, STV)

Young Voting

- Condorcet-consistent rules \approx “candidate *closest* to being Condorcet should win”.

Young Voting

- Condorcet-consistent rules \approx “candidate *closest* to being Condorcet should win”.
- **Young Score:** *#voter deletions* to become Condorcet

Young Voting

- Condorcet-consistent rules \approx “candidate *closest* to being Condorcet should win”.
- **Young Score:** #voter deletions to become Condorcet
- c with smallest YS is **Young Winner**.

Young Voting

- Condorcet-consistent rules \approx “candidate *closest* to being Condorcet should win”.
- **Young Score:** #voter deletions to become Condorcet
- c with smallest YS is Young Winner.
- Harder than NP-complete:
 $P_{||}^{NP}$ -complete

Young Voting

- Condorcet-consistent rules \approx “candidate closest to being Condorcet should win”.
- **Young Score:** #voter deletions to become Condorcet
- c with smallest YS is Young Winner.
- Harder than NP-complete:
 $P_{||}^{NP}$ -complete

$$n_i = \#\text{voters of type } i;$$

$$x_i = \#\text{deleted voters of type } i$$

$$\min \sum_i x_i$$

$$0 \leq x_i \leq n_i \quad i \in [\tau]$$

$$\sum_{i: c^* >_i c'} (n_i - x_i) > \sum_{i: c' >_i c^*} (n_i - x_i) \quad \forall c' \neq c^*$$
$$\mathbf{x} \in \mathbb{N}^\tau$$

Young Voting

- Condorcet-consistent rules \approx “candidate closest to being Condorcet should win”.
- **Young Score:** #voter deletions to become Condorcet
- c with smallest YS is Young Winner.
- Harder than NP-complete:
 $P_{||}^{NP}$ -complete
- **Society Continuum:** Polytime! (Linear Programming)

$$n_i = \#\text{voters of type } i;$$

$$x_i = \#\text{deleted voters of type } i$$

$$\min \sum_i x_i$$

$$0 \leq x_i \leq n_i \quad i \in [\tau]$$

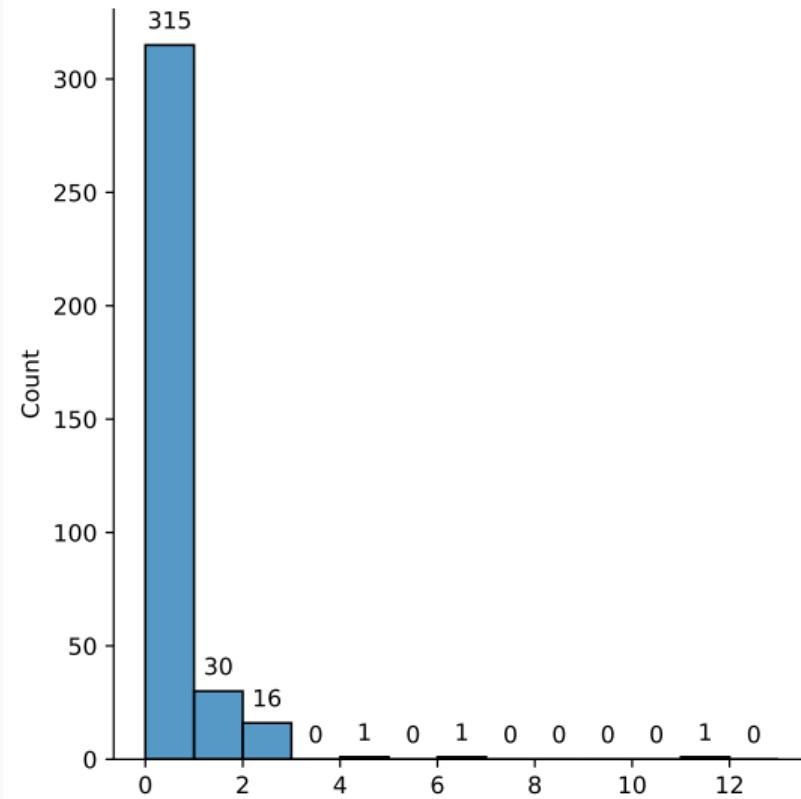
$$\sum_{i: c^* >_i c'} (n_i - x_i) > \sum_{i: c' >_i c^*} (n_i - x_i) \quad \forall c' \neq c^*$$

$$\mathbf{x} \in \mathbb{R}^{\tau}$$

Young Voting: Preflib (Political Elections)

On political elections of PrefLib ($n = 364$):

- YOUNG SCORE vs YOUNG SCORE $_{\infty}$ **always** give the same ranking
- On $n = 315$ elections both scores **agree completely**
- On remaining 49 elections never differ by more than 12, or 0.14% in relative terms.

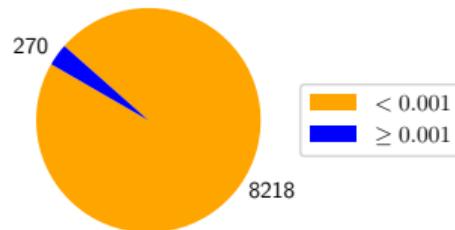


Young Voting: Preflib (All Elections)

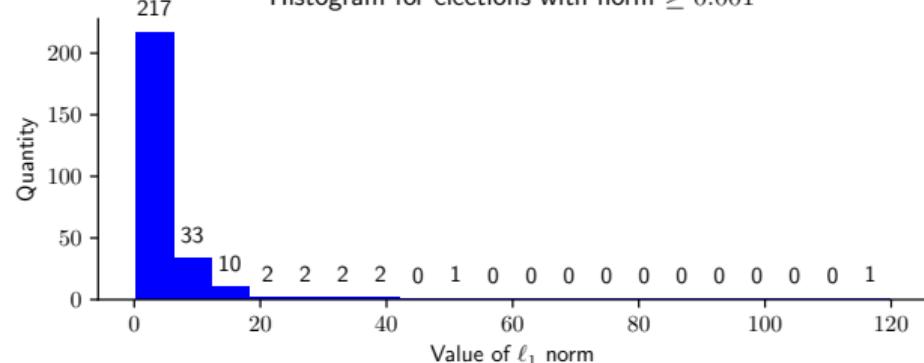
On all elections of PrefLib
($n = 8482$ elections):

- YOUNG SCORE vs YOUNG SCORE $_{\infty}$ give the same ranking on 97% instances
- On remaining elections does not differ much

Proportion of elections with norms < 0.001



Histogram for elections with norm ≥ 0.001



Dodgson Voting

- Condorcet-consistent rules \approx “candidate *closest* to being Condorcet should win”.
- **Dodgson Score:** *#adjacent swaps* to become Condorcet
- c with smallest DS is **Dodgson Winner**.
- Harder than NP-complete:
 $P_{||}^{NP}$ -complete

Dodgson Voting

- Condorcet-consistent rules \approx “candidate closest to being Condorcet should win”.
- Dodgson Score:** #adjacent swaps to become Condorcet
- c with smallest DS is Dodgson Winner.
- Harder than NP-complete:
 $P_{||}^{NP}$ -complete

$$n_i = \#\text{voters of type } i;$$

$$x_{ij} = \#\text{voters of type } i \text{ with } j \text{ shifts up of } *$$

$$\min \sum_i \sum_j j \cdot x_{ij}$$

$$\sum_j x_{ij} = n_i \quad i \in [\tau]$$

$$\sum_{t: c^* >_t c'} y_t > \sum_{t: c' >_t c^*} y_t \quad \forall c' \neq c^*$$

$$x_{ij} \in \mathbb{N}$$

Dodgson Voting

- Condorcet-consistent rules \approx “candidate closest to being Condorcet should win”.
- **Dodgson Score:** #adjacent swaps to become Condorcet
- c with smallest DS is Dodgson Winner.
- Harder than NP-complete:
 P_{\parallel}^{NP} -complete
- **Society Continuum:** Polytime! (LP)

$$n_i = \#\text{voters of type } i;$$

$$x_{ij} = \#\text{voters of type } i \text{ with } j \text{ shifts up of } *$$

$$\min \sum_i \sum_j j \cdot x_{ij}$$

$$\sum_j x_{ij} = n_i \quad i \in [\tau]$$

$$\sum_{t: c^* >_t c'} y_t > \sum_{t: c' >_t c^*} y_t \quad \forall c' \neq c^*$$

$$x_{ij} \in \mathbb{R}_{\geq 0}$$

Dodgson Voting

- Condorcet-consistent rules \approx “candidate closest to being Condorcet should win”.
- **Dodgson Score:** #adjacent swaps to become Condorcet
- c with smallest DS is Dodgson Winner.
- Harder than NP-complete:
 $P_{||}^{NP}$ -complete
- **Society Continuum:** Polytime! (LP)
- We're lucky: **shifts up suffice**, o/w $\Theta(m!)$ “output types” to consider

$$n_i = \#\text{voters of type } i;$$

$$x_{ij} = \#\text{voters of type } i \text{ with } j \text{ shifts up of } *$$

$$\min \sum_i \sum_j j \cdot x_{ij}$$

$$\sum_j x_{ij} = n_i \quad i \in [\tau]$$

$$\sum_{t: c^* >_t c'} y_t > \sum_{t: c' >_t c^*} y_t \quad \forall c' \neq c^*$$

$$x_{ij} \in \mathbb{R}_{\geq 0}$$

Kemeny Voting

- **Kemeny ranking** \approx swap-distance
average of all voters

Kemeny Voting

- **Kemeny ranking** \approx swap-distance
average of all voters
- **Specifically:** ranking \succ minimizing
total swap distance from all voters.

Kemeny Voting

- **Kemeny ranking** \approx swap-distance
average of all voters
- **Specifically:** ranking \succ minimizing
total swap distance from all voters.
- c is **Kemeny winner** if top of some KR

Kemeny Voting

- **Kemeny ranking** \approx swap-distance
average of all voters
- **Specifically:** ranking \succ minimizing
total swap distance from all voters.
- c is **Kemeny winner** if top of some KR
- Harder than NP-complete:
 P_{\parallel}^{NP} -complete

Kemeny Voting

- **Kemeny ranking** \approx swap-distance
average of all voters
- **Specifically:** ranking \succ minimizing
total swap distance from all voters.
- c is **Kemeny winner** if top of some KR
- Harder than NP-complete:
 P_{\parallel}^{NP} -complete
- **Society Continuum:** Still hard!

Kemeny Voting

- **Kemeny ranking** \approx swap-distance **average** of all voters
- **Specifically:** ranking \succ minimizing total swap distance from all voters.
- c is **Kemeny winner** if top of some KR
- Harder than NP-complete:
 P_{\parallel}^{NP} -complete
- **Society Continuum:** Still hard!

Proof Sketch:

- Each voter type \equiv **ranking + weight**

Kemeny Voting

- **Kemeny ranking** \approx swap-distance **average** of all voters
- **Specifically:** ranking \succ minimizing total swap distance from all voters.
- c is **Kemeny winner** if top of some KR
- Harder than NP-complete:
 P_{\parallel}^{NP} -complete
- **Society Continuum:** Still hard!

Proof Sketch:

- Each voter type \equiv ranking + weight
- Kemeny Ranking is **weighted average of voter types**

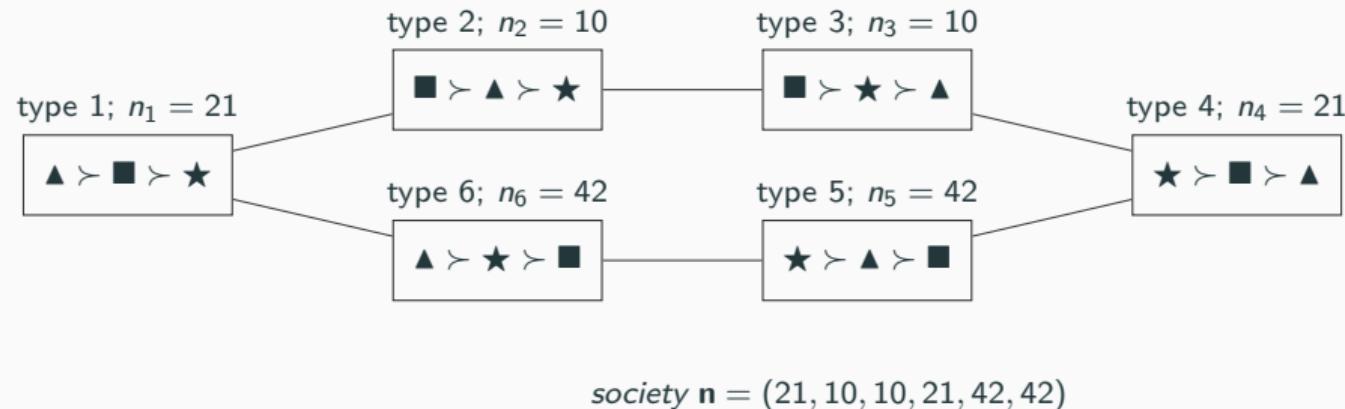
Kemeny Voting

- **Kemeny ranking** \approx swap-distance **average** of all voters
- **Specifically:** ranking \succ minimizing total swap distance from all voters.
- c is **Kemeny winner** if top of some KR
- Harder than NP-complete:
 P_{\parallel}^{NP} -complete
- **Society Continuum:** Still hard!

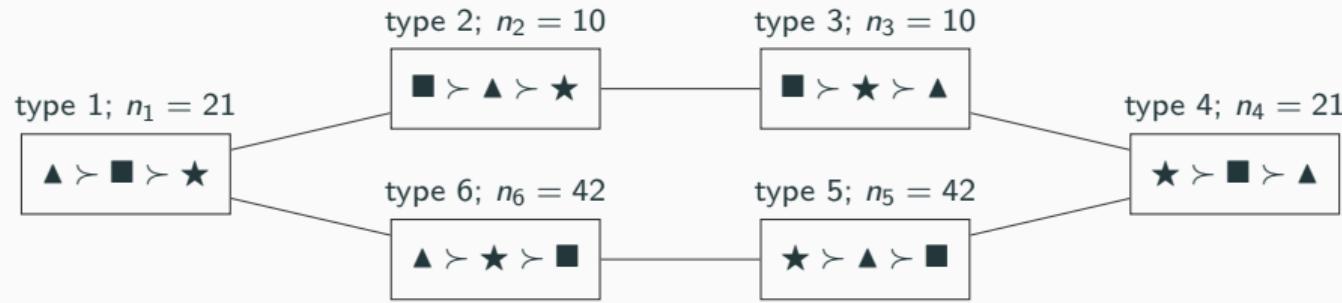
Proof Sketch:

- Each voter type \equiv ranking + weight
- Kemeny Ranking is weighted average of voter types
- : Down-scaling weights by a scalar doesn't change the average!

Bribing



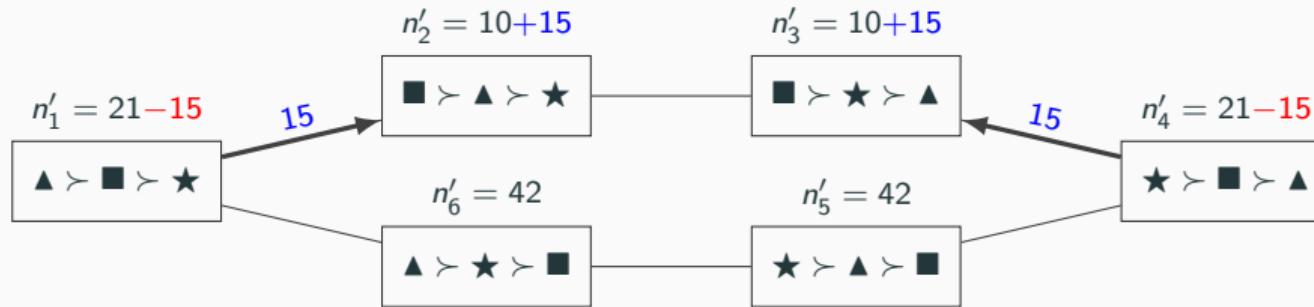
Bribing



$$society \mathbf{n} = (21, 10, 10, 21, 42, 42)$$

“**Bribery:**” cheapest way to move voters s.t. ■ wins Plurality? (unit cost per swap)

Bribing



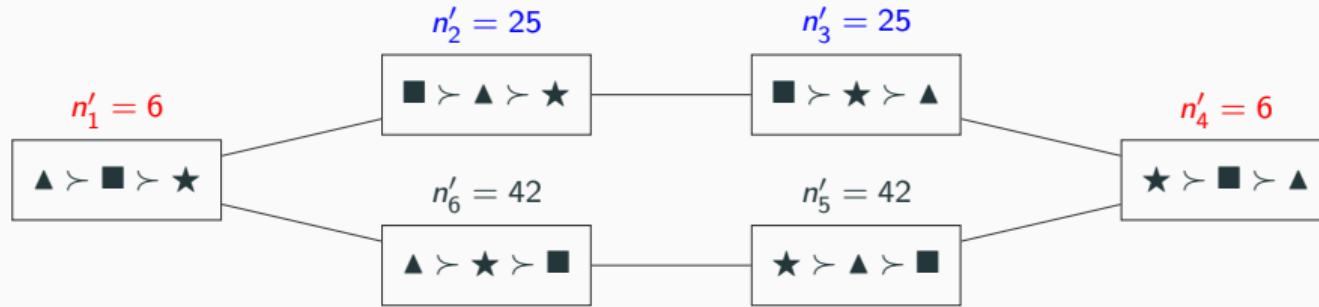
society $\mathbf{n} = (21, 10, 10, 21, 42, 42)$

move $\mathbf{m} = (0, \dots, 0, +15, +15, 0, \dots, 0)$ (arc space of complete oriented graph)

change $\Delta = \Delta(\mathbf{m}) = (-15, +15, +15, -15, 0, 0)$

“**Bribery:**” cheapest way to move voters s.t. ■ wins Plurality? (unit cost per swap)

Bribing

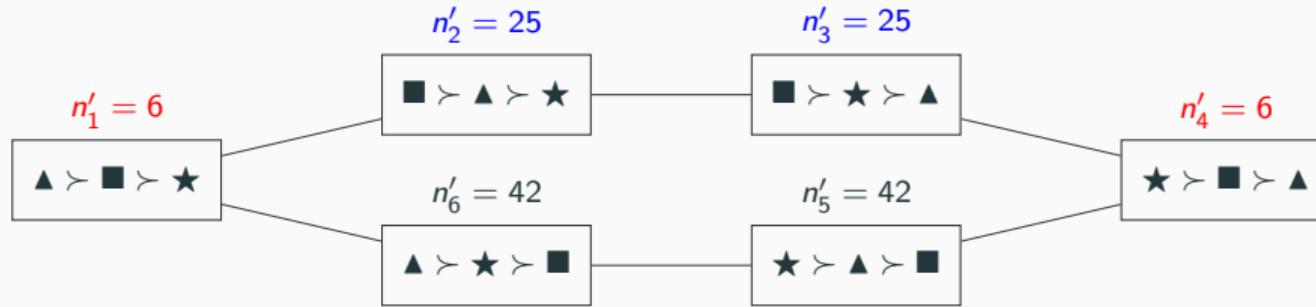


$$\mathbf{n}' = \mathbf{n} + \Delta \text{ with } \Delta = (-15, +15, +15, -15, 0, 0)$$

■ wins: $48 = n'_1 + n'_6 = n'_4 + n'_5 < n'_2 + n'_3 = 50$

“Bribery:” cheapest way to move voters s.t. ■ wins Plurality? (unit cost per swap)

Bribing



$$\mathbf{n}' = \mathbf{n} + \Delta \text{ with } \Delta = (-15, +15, +15, -15, 0, 0)$$

$$\blacksquare \text{ wins: } 48 = n'_1 + n'_6 = n'_4 + n'_5 < n'_2 + n'_3 = 50$$

“Bribery:” cheapest way to move voters s.t. \blacksquare wins Plurality? (unit cost per swap)

Actually: BRIBERY, \$BRIBERY, SHIFT BRIBERY, SWAP BRIBERY, CCDV, etc.

Borda-●-Bribery

- **Borda's Rule:** give $m - 1$ points to 1st candidate, $m - 2$ to 2nd, etc.

Borda-•-Bribery

- **Borda's Rule:** give $m - 1$ points to 1st candidate, $m - 2$ to 2nd, etc.
- SHIFT-BRIBERY $_{\infty}$: easy (LP with $\mathcal{O}(\tau m)$ variables)

Borda-•-Bribery

- **Borda's Rule:** give $m - 1$ points to 1st candidate, $m - 2$ to 2nd, etc.
- SHIFT-BRIBERY $_{\infty}$: easy (LP with $\mathcal{O}(\tau m)$ variables)
- CONSTRUCTIVE CONTROL BY ADDING/DELETING VOTERS $_{\infty}$: ditto

Borda-•-Bribery

- **Borda's Rule:** give $m - 1$ points to 1st candidate, $m - 2$ to 2nd, etc.
- SHIFT-BRIBERY $_{\infty}$: easy (LP with $\mathcal{O}(\tau m)$ variables)
- CONSTRUCTIVE CONTROL BY ADDING/DELETING VOTERS $_{\infty}$: ditto
- Unit cost SWAP BRIBERY $_{\infty}$: easy (reduces to SHIFT BRIBERY $_{\infty}$)

Borda-•-Bribery

- **Borda's Rule:** give $m - 1$ points to 1st candidate, $m - 2$ to 2nd, etc.
- SHIFT-BRIBERY $_{\infty}$: easy (LP with $\mathcal{O}(\tau m)$ variables)
- CONSTRUCTIVE CONTROL BY ADDING/DELETING VOTERS $_{\infty}$: ditto
- Unit cost SWAP BRIBERY $_{\infty}$: easy (reduces to SHIFT BRIBERY $_{\infty}$)
- BRIBERY, \$BRIBERY $_{\infty}$: easy-ish (Configuration LP with easy separation problem)

Borda-•-Bribery

- **Borda's Rule:** give $m - 1$ points to 1st candidate, $m - 2$ to 2nd, etc.
- SHIFT-BRIBERY $_{\infty}$: easy (LP with $\mathcal{O}(\tau m)$ variables)
- CONSTRUCTIVE CONTROL BY ADDING/DELETING VOTERS $_{\infty}$: ditto
- Unit cost SWAP BRIBERY $_{\infty}$: easy (reduces to SHIFT BRIBERY $_{\infty}$)
- BRIBERY, \$BRIBERY $_{\infty}$: easy-ish (Configuration LP with easy separation problem)
 - LP with $\tau m!$ variables but $m + \tau$ constraints

Borda-•-Bribery

- **Borda's Rule:** give $m - 1$ points to 1st candidate, $m - 2$ to 2nd, etc.
- SHIFT-BRIBERY $_{\infty}$: easy (LP with $\mathcal{O}(\tau m)$ variables)
- CONSTRUCTIVE CONTROL BY ADDING/DELETING VOTERS $_{\infty}$: ditto
- Unit cost SWAP BRIBERY $_{\infty}$: easy (reduces to SHIFT BRIBERY $_{\infty}$)
- BRIBERY, \$BRIBERY $_{\infty}$: easy-ish (Configuration LP with easy separation problem)
 - LP with $\tau m!$ variables but $m + \tau$ constraints
 - Its dual has $m + \tau$ vars but many constraints

Borda-•-Bribery

- **Borda's Rule:** give $m - 1$ points to 1st candidate, $m - 2$ to 2nd, etc.
- SHIFT-BRIBERY $_{\infty}$: easy (LP with $\mathcal{O}(\tau m)$ variables)
- CONSTRUCTIVE CONTROL BY ADDING/DELETING VOTERS $_{\infty}$: ditto
- Unit cost SWAP BRIBERY $_{\infty}$: easy (reduces to SHIFT BRIBERY $_{\infty}$)
- BRIBERY, \$BRIBERY $_{\infty}$: easy-ish (Configuration LP with easy separation problem)
 - LP with $\tau m!$ variables but $m + \tau$ constraints
 - Its dual has $m + \tau$ vars but many constraints
 - Separation \implies Optimization

Borda-•-Bribery

- **Borda's Rule:** give $m - 1$ points to 1st candidate, $m - 2$ to 2nd, etc.
- SHIFT-BRIBERY $_{\infty}$: easy (LP with $\mathcal{O}(\tau m)$ variables)
- CONSTRUCTIVE CONTROL BY ADDING/DELETING VOTERS $_{\infty}$: ditto
- Unit cost SWAP BRIBERY $_{\infty}$: easy (reduces to SHIFT BRIBERY $_{\infty}$)
- BRIBERY, \$BRIBERY $_{\infty}$: easy-ish (Configuration LP with easy separation problem)
 - LP with $\tau m!$ variables but $m + \tau$ constraints
 - Its dual has $m + \tau$ vars but many constraints
 - Separation \implies Optimization
 - Here, separation = sorting

Borda-•-Bribery

- **Borda's Rule:** give $m - 1$ points to 1st candidate, $m - 2$ to 2nd, etc.
- SHIFT-BRIBERY $_{\infty}$: easy (LP with $\mathcal{O}(\tau m)$ variables)
- CONSTRUCTIVE CONTROL BY ADDING/DELETING VOTERS $_{\infty}$: ditto
- Unit cost SWAP BRIBERY $_{\infty}$: easy (reduces to SHIFT BRIBERY $_{\infty}$)
- BRIBERY, \$BRIBERY $_{\infty}$: easy-ish (Configuration LP with easy separation problem)
 - LP with $\tau m!$ variables but $m + \tau$ constraints
 - Its dual has $m + \tau$ vars but many constraints
 - Separation \implies Optimization
 - Here, separation = sorting
- General cost SWAP BRIBERY $_{\infty}$: ...probably hard?

Borda-•-Bribery

- **Borda's Rule:** give $m - 1$ points to 1st candidate, $m - 2$ to 2nd, etc.
- SHIFT-BRIBERY $_{\infty}$: easy (LP with $\mathcal{O}(\tau m)$ variables)
- CONSTRUCTIVE CONTROL BY ADDING/DELETING VOTERS $_{\infty}$: ditto
- Unit cost SWAP BRIBERY $_{\infty}$: easy (reduces to SHIFT BRIBERY $_{\infty}$)
- BRIBERY, \$BRIBERY $_{\infty}$: easy-ish (Configuration LP with easy separation problem)
 - LP with $\tau m!$ variables but $m + \tau$ constraints
 - Its dual has $m + \tau$ vars but many constraints
 - Separation \implies Optimization
 - Here, separation = sorting
- General cost SWAP BRIBERY $_{\infty}$: ...probably hard?
- “Potentials-cost” SWAP BRIBERY $_{\infty}$: ...probably easy?

Borda-•-Bribery

- **Borda's Rule:** give $m - 1$ points to 1st candidate, $m - 2$ to 2nd, etc.
- SHIFT-BRIBERY $_{\infty}$: easy (LP with $\mathcal{O}(\tau m)$ variables)
- CONSTRUCTIVE CONTROL BY ADDING/DELETING VOTERS $_{\infty}$: ditto
- Unit cost SWAP BRIBERY $_{\infty}$: easy (reduces to SHIFT BRIBERY $_{\infty}$)
- BRIBERY, \$BRIBERY $_{\infty}$: easy-ish (Configuration LP with easy separation problem)
 - LP with $\tau m!$ variables but $m + \tau$ constraints
 - Its dual has $m + \tau$ vars but many constraints
 - Separation \implies Optimization
 - Here, separation = sorting
- General cost SWAP BRIBERY $_{\infty}$: ...probably hard?
- “Potentials-cost” SWAP BRIBERY $_{\infty}$: ...probably easy?
 - costs like “swapping candidates initially at distance k costs k ”

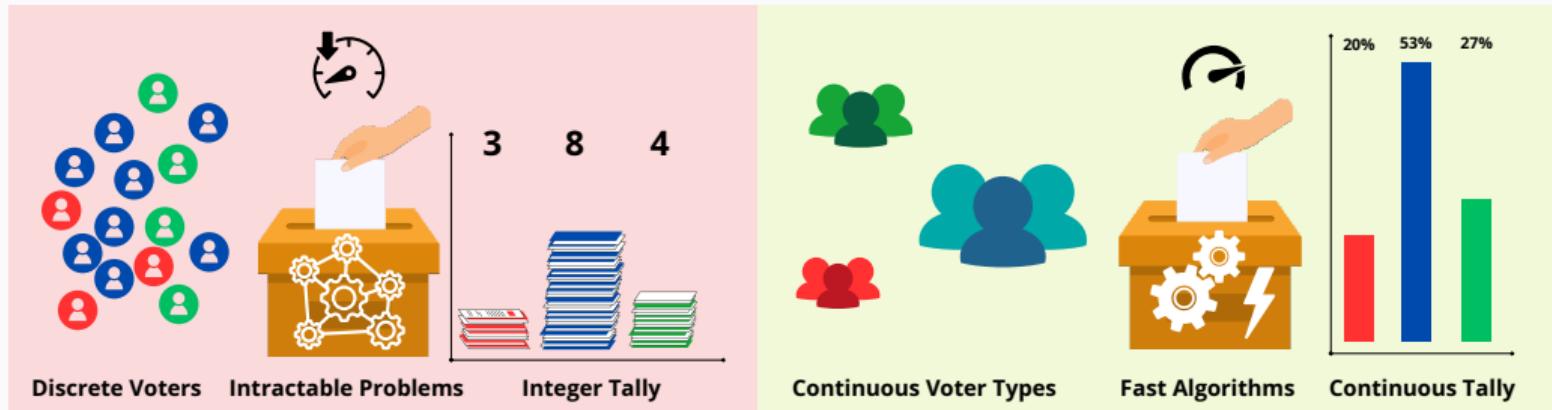
Borda-•-Bribery

- **Borda's Rule:** give $m - 1$ points to 1st candidate, $m - 2$ to 2nd, etc.
- SHIFT-BRIBERY $_{\infty}$: easy (LP with $\mathcal{O}(\tau m)$ variables)
- CONSTRUCTIVE CONTROL BY ADDING/DELETING VOTERS $_{\infty}$: ditto
- Unit cost SWAP BRIBERY $_{\infty}$: easy (reduces to SHIFT BRIBERY $_{\infty}$)
- BRIBERY, \$BRIBERY $_{\infty}$: easy-ish (Configuration LP with easy separation problem)
 - LP with $\tau m!$ variables but $m + \tau$ constraints
 - Its dual has $m + \tau$ vars but many constraints
 - Separation \implies Optimization
 - Here, separation = sorting
- General cost SWAP BRIBERY $_{\infty}$: ...probably hard?
- “Potentials-cost” SWAP BRIBERY $_{\infty}$: ...probably easy?
 - costs like “swapping candidates initially at distance k costs k ”
 - separation problem \equiv special case of LINEAR ORDERING PROBLEM (NP-c)

Borda-•-Bribery

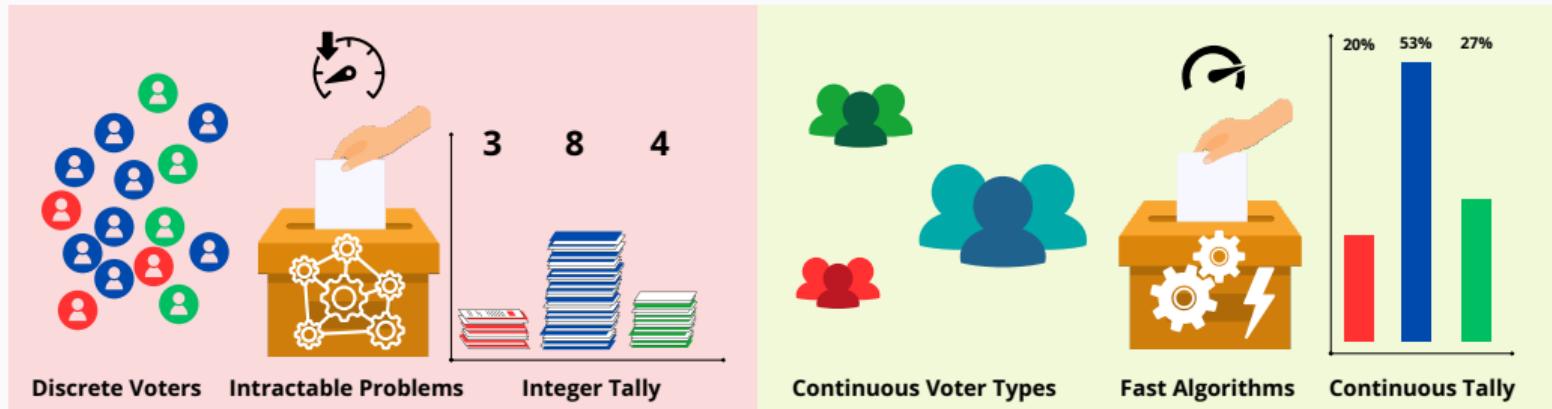
- **Borda's Rule:** give $m - 1$ points to 1st candidate, $m - 2$ to 2nd, etc.
- SHIFT-BRIBERY $_{\infty}$: easy (LP with $\mathcal{O}(\tau m)$ variables)
- CONSTRUCTIVE CONTROL BY ADDING/DELETING VOTERS $_{\infty}$: ditto
- Unit cost SWAP BRIBERY $_{\infty}$: easy (reduces to SHIFT BRIBERY $_{\infty}$)
- BRIBERY, \$BRIBERY $_{\infty}$: easy-ish (Configuration LP with easy separation problem)
 - LP with $\tau m!$ variables but $m + \tau$ constraints
 - Its dual has $m + \tau$ vars but many constraints
 - Separation \implies Optimization
 - Here, separation = sorting
- General cost SWAP BRIBERY $_{\infty}$: ...probably hard?
- “Potentials-cost” SWAP BRIBERY $_{\infty}$: ...probably easy?
 - costs like “swapping candidates initially at distance k costs k ”
 - separation problem \equiv special case of LINEAR ORDERING PROBLEM (NP-c)
 - For our costs, optimal face of a known LO relaxation is integral!

Bottom Line



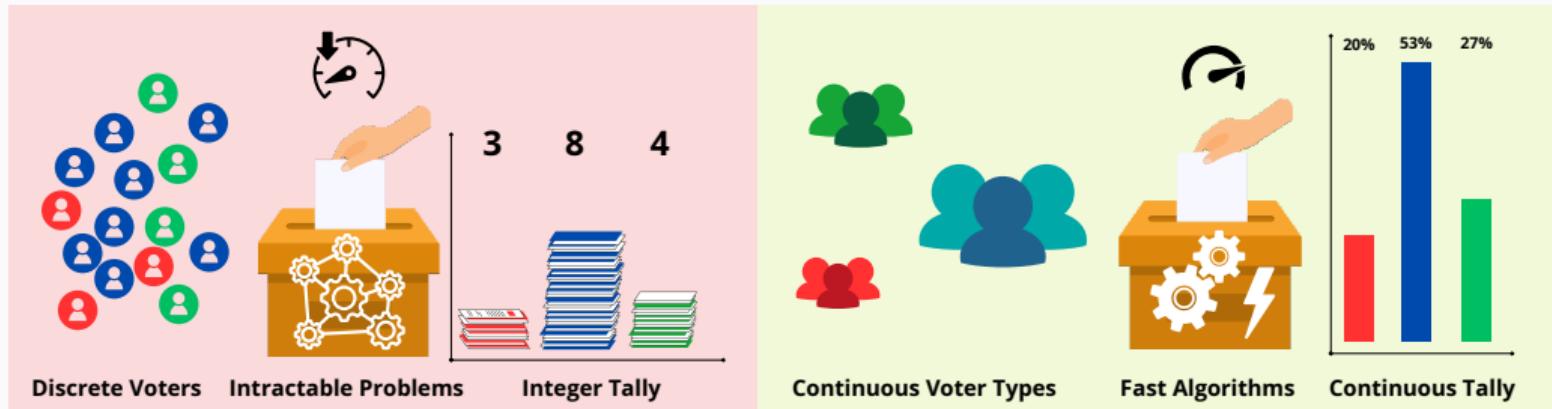
- Est. **half** relevant papers study a problem w/ natural continuous analogue

Bottom Line



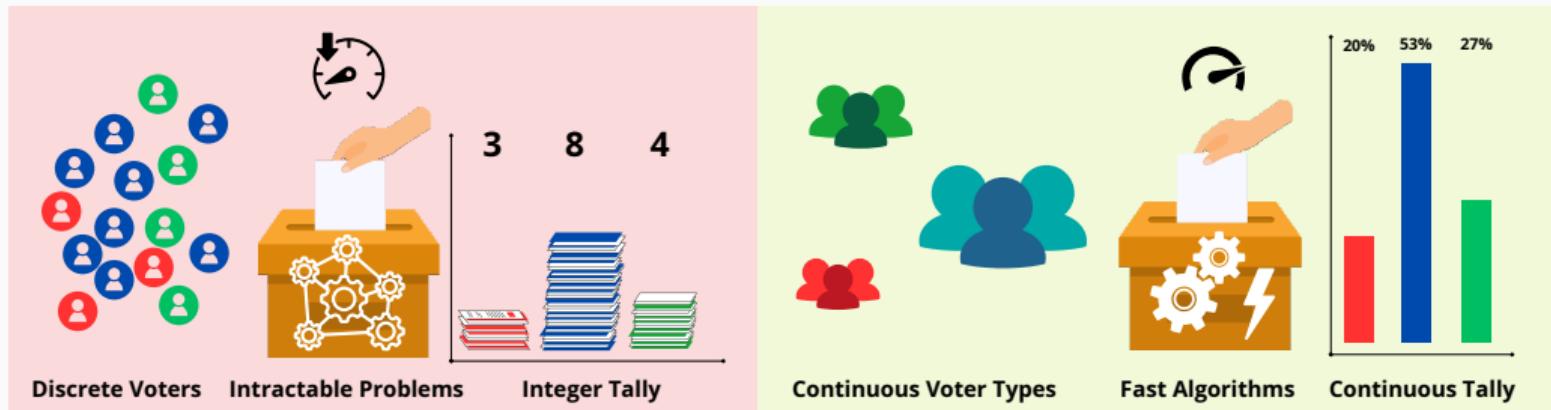
- Est. **half** relevant papers study a problem w/ natural continuous analogue
- **Rich and non-trivial** new complexity landscape

Bottom Line



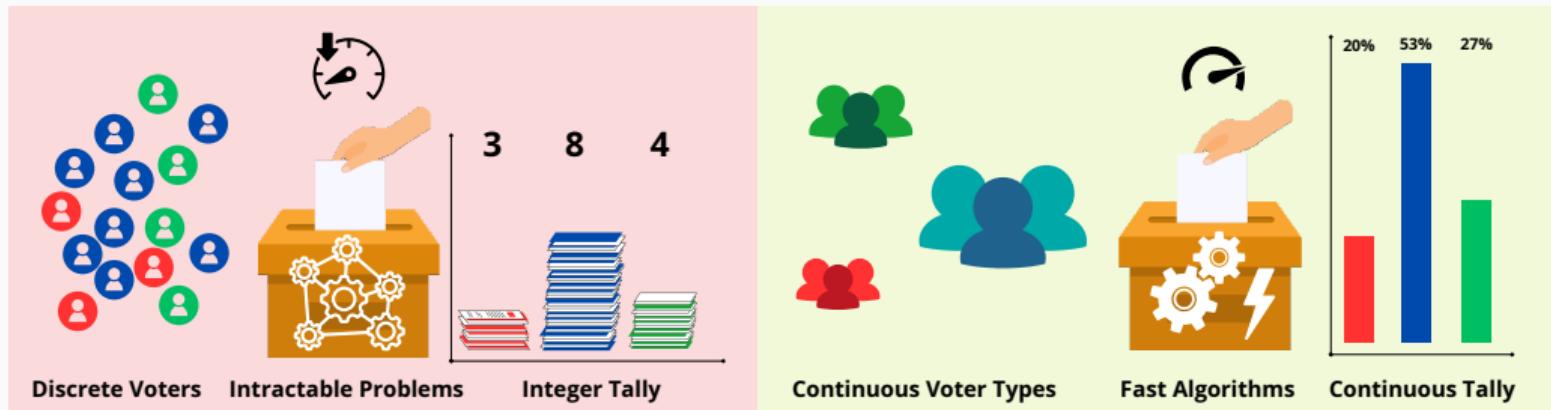
- Est. **half** relevant papers study a problem w/ natural continuous analogue
- Rich and non-trivial new complexity landscape
- Opportunity to use **new tools** (in ComSoC)

Bottom Line



- Est. **half** relevant papers study a problem w/ natural continuous analogue
- Rich and non-trivial new complexity landscape
- Opportunity to use new tools (in ComSoC)
- May reveal where hardness is a **modeling artifact**

Bottom Line



- Est. **half** relevant papers study a problem w/ natural continuous analogue
- Rich and non-trivial new complexity landscape
- Opportunity to use new tools (in ComSoC)
- May reveal where hardness is a **modeling artifact**

Thank You!