
Continuous Computational Social Choice

Martin Koutecký
November 6th, 2025 AGATE Kick-off

Continuous Computational Social Choice

• Social choice: voting, matching, allocations, ...

• Computational SoC: algorithms and hardness
• Traditionally: discrete agents ⇝ hard
• New perspective:

• Focus on agent types
• Forget individuals ⇝

continuous quantities ⇝
efficient (?)

• Analogous to: Mean-field Theory

• Statistical Physics
• Mean-field Game Theory
• “Geometry of Voting”

Continuous Computational Social Choice

• Social choice: voting, matching, allocations, ...
• Computational SoC: algorithms and hardness

• Traditionally: discrete agents ⇝ hard
• New perspective:

• Focus on agent types
• Forget individuals ⇝

continuous quantities ⇝
efficient (?)

• Analogous to: Mean-field Theory

• Statistical Physics
• Mean-field Game Theory
• “Geometry of Voting”

Continuous Computational Social Choice

• Social choice: voting, matching, allocations, ...
• Computational SoC: algorithms and hardness
• Traditionally: discrete agents ⇝ hard

• New perspective:

• Focus on agent types
• Forget individuals ⇝

continuous quantities ⇝
efficient (?)

• Analogous to: Mean-field Theory

• Statistical Physics
• Mean-field Game Theory
• “Geometry of Voting”

Continuous Computational Social Choice

• Social choice: voting, matching, allocations, ...
• Computational SoC: algorithms and hardness
• Traditionally: discrete agents ⇝ hard
• New perspective:

• Focus on agent types

• Forget individuals ⇝
continuous quantities ⇝
efficient (?)

• Analogous to: Mean-field Theory

• Statistical Physics
• Mean-field Game Theory
• “Geometry of Voting”

Continuous Computational Social Choice

• Social choice: voting, matching, allocations, ...
• Computational SoC: algorithms and hardness
• Traditionally: discrete agents ⇝ hard
• New perspective:

• Focus on agent types
• Forget individuals ⇝

continuous quantities ⇝
efficient (?)

• Analogous to: Mean-field Theory

• Statistical Physics
• Mean-field Game Theory
• “Geometry of Voting”

56%

31%

13%

Continuous Computational Social Choice

• Social choice: voting, matching, allocations, ...
• Computational SoC: algorithms and hardness
• Traditionally: discrete agents ⇝ hard
• New perspective:

• Focus on agent types
• Forget individuals ⇝

continuous quantities ⇝
efficient (?)

• Analogous to: Mean-field Theory
• Statistical Physics
• Mean-field Game Theory
• “Geometry of Voting”

56%

31%

13%

Case Study: Voting & Bribery

Candidates: ▲, ■, and ⋆.
People: preference (e.g. ■ ≻ ▲ ≻⋆)
Society: how many people of which type ⇒ Society Graph:

▲ ≻ ■ ≻ ⋆

type 1; n1 = 21 ■ ≻ ▲ ≻ ⋆

type 2; n2 = 10

■ ≻ ⋆ ≻ ▲

type 3; n3 = 10

⋆ ≻ ■ ≻ ▲

type 4; n4 = 21

⋆ ≻ ▲ ≻ ■

type 5; n5 = 42

▲ ≻ ⋆ ≻ ■

type 6; n6 = 42

Edges ≡ swap distance 1.
Society n = (21, 10, 10, 21, 42, 42)

Continuous Society:
µ = n

∥n∥1
≈ (.14, .07, .07, .14, .29, .29)

Voting rule: given a society, who
should win?

• Plurality = most times first
• Condorcet = beats everyone

head-to-head
• Many others (Borda, Kemeny,

Dodgson, Approval, STV)

Case Study: Voting & Bribery

Candidates: ▲, ■, and ⋆.
People: preference (e.g. ■ ≻ ▲ ≻⋆)
Society: how many people of which type ⇒ Society Graph:

▲ ≻ ■ ≻ ⋆

type 1; n1 = 21 ■ ≻ ▲ ≻ ⋆

type 2; n2 = 10

■ ≻ ⋆ ≻ ▲

type 3; n3 = 10

⋆ ≻ ■ ≻ ▲

type 4; n4 = 21

⋆ ≻ ▲ ≻ ■

type 5; n5 = 42

▲ ≻ ⋆ ≻ ■

type 6; n6 = 42

Edges ≡ swap distance 1.
Society n = (21, 10, 10, 21, 42, 42)

Continuous Society:
µ = n

∥n∥1
≈ (.14, .07, .07, .14, .29, .29)

Voting rule: given a society, who
should win?

• Plurality = most times first
• Condorcet = beats everyone

head-to-head
• Many others (Borda, Kemeny,

Dodgson, Approval, STV)

Case Study: Voting & Bribery

Candidates: ▲, ■, and ⋆.
People: preference (e.g. ■ ≻ ▲ ≻⋆)
Society: how many people of which type ⇒ Society Graph:

▲ ≻ ■ ≻ ⋆

type 1; n1 = 21 ■ ≻ ▲ ≻ ⋆

type 2; n2 = 10

■ ≻ ⋆ ≻ ▲

type 3; n3 = 10

⋆ ≻ ■ ≻ ▲

type 4; n4 = 21

⋆ ≻ ▲ ≻ ■

type 5; n5 = 42

▲ ≻ ⋆ ≻ ■

type 6; n6 = 42

Edges ≡ swap distance 1.
Society n = (21, 10, 10, 21, 42, 42)

Continuous Society:
µ = n

∥n∥1
≈ (.14, .07, .07, .14, .29, .29)

Voting rule: given a society, who
should win?

• Plurality = most times first
• Condorcet = beats everyone

head-to-head
• Many others (Borda, Kemeny,

Dodgson, Approval, STV)

Case Study: Voting & Bribery

Candidates: ▲, ■, and ⋆.
People: preference (e.g. ■ ≻ ▲ ≻⋆)
Society: how many people of which type ⇒ Society Graph:

▲ ≻ ■ ≻ ⋆

type 1; n1 = 21 ■ ≻ ▲ ≻ ⋆

type 2; n2 = 10

■ ≻ ⋆ ≻ ▲

type 3; n3 = 10

⋆ ≻ ■ ≻ ▲

type 4; n4 = 21

⋆ ≻ ▲ ≻ ■

type 5; n5 = 42

▲ ≻ ⋆ ≻ ■

type 6; n6 = 42

Edges ≡ swap distance 1.
Society n = (21, 10, 10, 21, 42, 42)

Continuous Society:
µ = n

∥n∥1
≈ (.14, .07, .07, .14, .29, .29)

Voting rule: given a society, who
should win?

• Plurality = most times first
• Condorcet = beats everyone

head-to-head
• Many others (Borda, Kemeny,

Dodgson, Approval, STV)

Young Voting

• Condorcet-consistent rules ≈ “candidate
closest to being Condorcet should win”.

• Young Score: #voter deletions to
become Condorcet

• c with smallest YS is Young Winner.
• Harder than NP-complete:

PNP
|| -complete

• Society Continuum: Polytime! (Linear
Programming)

ni = #voters of type i;
xi = #deleted voters of type i

min
∑

i
xi

0 ≤ xi ≤ ni i ∈ [τ]∑
i:c⋆>ic′

(ni − xi) >
∑

i:c′>ic⋆
(ni − xi) ∀c′ ̸= c⋆

x ∈

Young Voting

• Condorcet-consistent rules ≈ “candidate
closest to being Condorcet should win”.

• Young Score: #voter deletions to
become Condorcet

• c with smallest YS is Young Winner.
• Harder than NP-complete:

PNP
|| -complete

• Society Continuum: Polytime! (Linear
Programming)

ni = #voters of type i;
xi = #deleted voters of type i

min
∑

i
xi

0 ≤ xi ≤ ni i ∈ [τ]∑
i:c⋆>ic′

(ni − xi) >
∑

i:c′>ic⋆
(ni − xi) ∀c′ ̸= c⋆

x ∈

Young Voting

• Condorcet-consistent rules ≈ “candidate
closest to being Condorcet should win”.

• Young Score: #voter deletions to
become Condorcet

• c with smallest YS is Young Winner.

• Harder than NP-complete:
PNP
|| -complete

• Society Continuum: Polytime! (Linear
Programming)

ni = #voters of type i;
xi = #deleted voters of type i

min
∑

i
xi

0 ≤ xi ≤ ni i ∈ [τ]∑
i:c⋆>ic′

(ni − xi) >
∑

i:c′>ic⋆
(ni − xi) ∀c′ ̸= c⋆

x ∈

Young Voting

• Condorcet-consistent rules ≈ “candidate
closest to being Condorcet should win”.

• Young Score: #voter deletions to
become Condorcet

• c with smallest YS is Young Winner.
• Harder than NP-complete:

PNP
|| -complete

• Society Continuum: Polytime! (Linear
Programming)

ni = #voters of type i;
xi = #deleted voters of type i

min
∑

i
xi

0 ≤ xi ≤ ni i ∈ [τ]∑
i:c⋆>ic′

(ni − xi) >
∑

i:c′>ic⋆
(ni − xi) ∀c′ ̸= c⋆

x ∈

Young Voting

• Condorcet-consistent rules ≈ “candidate
closest to being Condorcet should win”.

• Young Score: #voter deletions to
become Condorcet

• c with smallest YS is Young Winner.
• Harder than NP-complete:

PNP
|| -complete

• Society Continuum: Polytime! (Linear
Programming)

ni = #voters of type i;
xi = #deleted voters of type i

min
∑

i
xi

0 ≤ xi ≤ ni i ∈ [τ]∑
i:c⋆>ic′

(ni − xi) >
∑

i:c′>ic⋆
(ni − xi) ∀c′ ̸= c⋆

x ∈ Nτ

Young Voting

• Condorcet-consistent rules ≈ “candidate
closest to being Condorcet should win”.

• Young Score: #voter deletions to
become Condorcet

• c with smallest YS is Young Winner.
• Harder than NP-complete:

PNP
|| -complete

• Society Continuum: Polytime! (Linear
Programming)

ni = #voters of type i;
xi = #deleted voters of type i

min
∑

i
xi

0 ≤ xi ≤ ni i ∈ [τ]∑
i:c⋆>ic′

(ni − xi) >
∑

i:c′>ic⋆
(ni − xi) ∀c′ ̸= c⋆

x ∈ Rτ

Young Voting: Preflib (Political Elections)

On political elections of PrefLib (n = 364):
• Young Score vs Young Score∞

always give the same ranking
• On n = 315 elections both scores agree

completely
• On remaining 49 elections never differ

by more than 12, or 0.14% in relative
terms.

0 2 4 6 8 10 12
0

50

100

150

200

250

300

Co
un

t

315

30
16

0 1 0 1 0 0 0 0 1 0

Young Voting: Preflib (All Elections)

On all elections of PrefLib
(n = 8482 elections):

• Young Score vs
Young Score∞ give the
same ranking on 97%
instances

• On remaining elections
does not differ much

8218

270

Proportion of elections with norms < 0.001

< 0.001

≥ 0.001

0 20 40 60 80 100 120

Value of `1 norm

0

50

100

150

200

Q
u

an
ti

ty

217

33
10 2 2 2 2 0 1 0 0 0 0 0 0 0 0 0 0 1

Histogram for elections with norm ≥ 0.001

Dodgson Voting

• Condorcet-consistent rules ≈ “candidate
closest to being Condorcet should win”.

• Dodgson Score: #adjacent swaps to
become Condorcet

• c with smallest DS is Dodgson Winner.
• Harder than NP-complete:

PNP
|| -complete

• Society Continuum: Polytime! (LP)
• We’re lucky: shifts up suffice, o/w

Θ(m!) “output types” to consider

ni = #voters of type i;
xij = #voters of type i with j shifts up of ⋆

min
∑

i

∑
j

j · xij∑
j

xij = ni i ∈ [τ]

∑
t:c⋆>tc′

yt >
∑

t:c′>ic⋆
yt ∀c′ ̸= c⋆

xij ∈

Dodgson Voting

• Condorcet-consistent rules ≈ “candidate
closest to being Condorcet should win”.

• Dodgson Score: #adjacent swaps to
become Condorcet

• c with smallest DS is Dodgson Winner.
• Harder than NP-complete:

PNP
|| -complete

• Society Continuum: Polytime! (LP)
• We’re lucky: shifts up suffice, o/w

Θ(m!) “output types” to consider

ni = #voters of type i;
xij = #voters of type i with j shifts up of ⋆

min
∑

i

∑
j

j · xij∑
j

xij = ni i ∈ [τ]

∑
t:c⋆>tc′

yt >
∑

t:c′>ic⋆
yt ∀c′ ̸= c⋆

xij ∈ N

Dodgson Voting

• Condorcet-consistent rules ≈ “candidate
closest to being Condorcet should win”.

• Dodgson Score: #adjacent swaps to
become Condorcet

• c with smallest DS is Dodgson Winner.
• Harder than NP-complete:

PNP
|| -complete

• Society Continuum: Polytime! (LP)

• We’re lucky: shifts up suffice, o/w
Θ(m!) “output types” to consider

ni = #voters of type i;
xij = #voters of type i with j shifts up of ⋆

min
∑

i

∑
j

j · xij∑
j

xij = ni i ∈ [τ]

∑
t:c⋆>tc′

yt >
∑

t:c′>ic⋆
yt ∀c′ ̸= c⋆

xij ∈ R≥0

Dodgson Voting

• Condorcet-consistent rules ≈ “candidate
closest to being Condorcet should win”.

• Dodgson Score: #adjacent swaps to
become Condorcet

• c with smallest DS is Dodgson Winner.
• Harder than NP-complete:

PNP
|| -complete

• Society Continuum: Polytime! (LP)
• We’re lucky: shifts up suffice, o/w

Θ(m!) “output types” to consider

ni = #voters of type i;
xij = #voters of type i with j shifts up of ⋆

min
∑

i

∑
j

j · xij∑
j

xij = ni i ∈ [τ]

∑
t:c⋆>tc′

yt >
∑

t:c′>ic⋆
yt ∀c′ ̸= c⋆

xij ∈ R≥0

Kemeny Voting

• Kemeny ranking ≈ swap-distance
average of all voters

• Specifically: ranking ≻ minimizing
total swap distance from all voters.

• c is Kemeny winner if top of some KR
• Harder than NP-complete:

PNP
|| -complete

• Society Continuum: Still hard!

Proof Sketch:

• Each voter type ≡ ranking + weight
• Kemeny Ranking is weighted average of

voter types
• : Down-scaling weights by a scalar

doesn’t change the average!

Kemeny Voting

• Kemeny ranking ≈ swap-distance
average of all voters

• Specifically: ranking ≻ minimizing
total swap distance from all voters.

• c is Kemeny winner if top of some KR
• Harder than NP-complete:

PNP
|| -complete

• Society Continuum: Still hard!

Proof Sketch:

• Each voter type ≡ ranking + weight
• Kemeny Ranking is weighted average of

voter types
• : Down-scaling weights by a scalar

doesn’t change the average!

Kemeny Voting

• Kemeny ranking ≈ swap-distance
average of all voters

• Specifically: ranking ≻ minimizing
total swap distance from all voters.

• c is Kemeny winner if top of some KR

• Harder than NP-complete:
PNP
|| -complete

• Society Continuum: Still hard!

Proof Sketch:

• Each voter type ≡ ranking + weight
• Kemeny Ranking is weighted average of

voter types
• : Down-scaling weights by a scalar

doesn’t change the average!

Kemeny Voting

• Kemeny ranking ≈ swap-distance
average of all voters

• Specifically: ranking ≻ minimizing
total swap distance from all voters.

• c is Kemeny winner if top of some KR
• Harder than NP-complete:

PNP
|| -complete

• Society Continuum: Still hard!

Proof Sketch:

• Each voter type ≡ ranking + weight
• Kemeny Ranking is weighted average of

voter types
• : Down-scaling weights by a scalar

doesn’t change the average!

Kemeny Voting

• Kemeny ranking ≈ swap-distance
average of all voters

• Specifically: ranking ≻ minimizing
total swap distance from all voters.

• c is Kemeny winner if top of some KR
• Harder than NP-complete:

PNP
|| -complete

• Society Continuum: Still hard!

Proof Sketch:

• Each voter type ≡ ranking + weight
• Kemeny Ranking is weighted average of

voter types
• : Down-scaling weights by a scalar

doesn’t change the average!

Kemeny Voting

• Kemeny ranking ≈ swap-distance
average of all voters

• Specifically: ranking ≻ minimizing
total swap distance from all voters.

• c is Kemeny winner if top of some KR
• Harder than NP-complete:

PNP
|| -complete

• Society Continuum: Still hard!

Proof Sketch:
• Each voter type ≡ ranking + weight

• Kemeny Ranking is weighted average of
voter types

• : Down-scaling weights by a scalar
doesn’t change the average!

Kemeny Voting

• Kemeny ranking ≈ swap-distance
average of all voters

• Specifically: ranking ≻ minimizing
total swap distance from all voters.

• c is Kemeny winner if top of some KR
• Harder than NP-complete:

PNP
|| -complete

• Society Continuum: Still hard!

Proof Sketch:
• Each voter type ≡ ranking + weight
• Kemeny Ranking is weighted average of

voter types

• : Down-scaling weights by a scalar
doesn’t change the average!

Kemeny Voting

• Kemeny ranking ≈ swap-distance
average of all voters

• Specifically: ranking ≻ minimizing
total swap distance from all voters.

• c is Kemeny winner if top of some KR
• Harder than NP-complete:

PNP
|| -complete

• Society Continuum: Still hard!

Proof Sketch:
• Each voter type ≡ ranking + weight
• Kemeny Ranking is weighted average of

voter types
• : Down-scaling weights by a scalar

doesn’t change the average!

Bribing

▲ ≻ ■ ≻ ⋆

type 1; n1 = 21 ■ ≻ ▲ ≻ ⋆

type 2; n2 = 10

■ ≻ ⋆ ≻ ▲

type 3; n3 = 10

⋆ ≻ ■ ≻ ▲

type 4; n4 = 21

⋆ ≻ ▲ ≻ ■

type 5; n5 = 42

▲ ≻ ⋆ ≻ ■

type 6; n6 = 42

society n = (21, 10, 10, 21, 42, 42)

“Bribery:” cheapest way to move voters s.t. ■ wins Plurality? (unit cost per swap)
Actually: Bribery, $Bribery, Shift Bribery, Swap Bribery, CCDV, etc.

Bribing

▲ ≻ ■ ≻ ⋆

type 1; n1 = 21 ■ ≻ ▲ ≻ ⋆

type 2; n2 = 10

■ ≻ ⋆ ≻ ▲

type 3; n3 = 10

⋆ ≻ ■ ≻ ▲

type 4; n4 = 21

⋆ ≻ ▲ ≻ ■

type 5; n5 = 42

▲ ≻ ⋆ ≻ ■

type 6; n6 = 42

society n = (21, 10, 10, 21, 42, 42)

“Bribery:” cheapest way to move voters s.t. ■ wins Plurality? (unit cost per swap)

Actually: Bribery, $Bribery, Shift Bribery, Swap Bribery, CCDV, etc.

Bribing

▲ ≻ ■ ≻ ⋆

n′
1 = 21−15 ■ ≻ ▲ ≻ ⋆

n′
2 = 10+15

■ ≻ ⋆ ≻ ▲

n′
3 = 10+15

⋆ ≻ ■ ≻ ▲

n′
4 = 21−15

⋆ ≻ ▲ ≻ ■

n′
5 = 42

▲ ≻ ⋆ ≻ ■

n′
6 = 42

15 15

society n = (21, 10, 10, 21, 42, 42)
move m = (0, . . . , 0,+15,+15, 0, . . . , 0) (arc space of complete oriented graph)

change ∆ = ∆(m) = (−15,+15,+15,−15, 0, 0)

“Bribery:” cheapest way to move voters s.t. ■ wins Plurality? (unit cost per swap)

Actually: Bribery, $Bribery, Shift Bribery, Swap Bribery, CCDV, etc.

Bribing

▲ ≻ ■ ≻ ⋆

n′
1 = 6 ■ ≻ ▲ ≻ ⋆

n′
2 = 25

■ ≻ ⋆ ≻ ▲

n′
3 = 25

⋆ ≻ ■ ≻ ▲

n′
4 = 6

⋆ ≻ ▲ ≻ ■

n′
5 = 42

▲ ≻ ⋆ ≻ ■

n′
6 = 42

n′ = n +∆ with ∆ = (−15,+15,+15,−15, 0, 0)
■ wins: 48 = n′

1 + n′
6 = n′

4 + n′
5 < n′

2 + n′
3 = 50

“Bribery:” cheapest way to move voters s.t. ■ wins Plurality? (unit cost per swap)

Actually: Bribery, $Bribery, Shift Bribery, Swap Bribery, CCDV, etc.

Bribing

▲ ≻ ■ ≻ ⋆

n′
1 = 6 ■ ≻ ▲ ≻ ⋆

n′
2 = 25

■ ≻ ⋆ ≻ ▲

n′
3 = 25

⋆ ≻ ■ ≻ ▲

n′
4 = 6

⋆ ≻ ▲ ≻ ■

n′
5 = 42

▲ ≻ ⋆ ≻ ■

n′
6 = 42

n′ = n +∆ with ∆ = (−15,+15,+15,−15, 0, 0)
■ wins: 48 = n′

1 + n′
6 = n′

4 + n′
5 < n′

2 + n′
3 = 50

“Bribery:” cheapest way to move voters s.t. ■ wins Plurality? (unit cost per swap)
Actually: Bribery, $Bribery, Shift Bribery, Swap Bribery, CCDV, etc.

Borda-•-Bribery

• Borda’s Rule: give m − 1 points to 1st candidate, m − 2 to 2nd, etc.

• Shift-Bribery∞: easy (LP with O(τm) variables)
• Constructive Control by Adding/Deleting Voters∞: ditto
• Unit cost Swap Bribery∞: easy (reduces to Shift Bribery∞)
• Bribery, $Bribery∞: easy-ish (Configuration LP with easy separation problem)

• LP with τm! variables but m + τ constraints
• Its dual has m + τ vars but many constraints
• Separation =⇒ Optimization
• Here, separation = sorting

• General cost Swap Bribery∞: ...probably hard?
• “Potentials-cost” Swap Bribery∞: ...probably easy?

• costs like “swapping candidates initially at distance k costs k”
• separation problem ≡ special case of Linear Ordering Problem (NP-c)
• For our costs, optimal face of a known LO relaxation is integral!

Borda-•-Bribery

• Borda’s Rule: give m − 1 points to 1st candidate, m − 2 to 2nd, etc.
• Shift-Bribery∞: easy (LP with O(τm) variables)

• Constructive Control by Adding/Deleting Voters∞: ditto
• Unit cost Swap Bribery∞: easy (reduces to Shift Bribery∞)
• Bribery, $Bribery∞: easy-ish (Configuration LP with easy separation problem)

• LP with τm! variables but m + τ constraints
• Its dual has m + τ vars but many constraints
• Separation =⇒ Optimization
• Here, separation = sorting

• General cost Swap Bribery∞: ...probably hard?
• “Potentials-cost” Swap Bribery∞: ...probably easy?

• costs like “swapping candidates initially at distance k costs k”
• separation problem ≡ special case of Linear Ordering Problem (NP-c)
• For our costs, optimal face of a known LO relaxation is integral!

Borda-•-Bribery

• Borda’s Rule: give m − 1 points to 1st candidate, m − 2 to 2nd, etc.
• Shift-Bribery∞: easy (LP with O(τm) variables)
• Constructive Control by Adding/Deleting Voters∞: ditto

• Unit cost Swap Bribery∞: easy (reduces to Shift Bribery∞)
• Bribery, $Bribery∞: easy-ish (Configuration LP with easy separation problem)

• LP with τm! variables but m + τ constraints
• Its dual has m + τ vars but many constraints
• Separation =⇒ Optimization
• Here, separation = sorting

• General cost Swap Bribery∞: ...probably hard?
• “Potentials-cost” Swap Bribery∞: ...probably easy?

• costs like “swapping candidates initially at distance k costs k”
• separation problem ≡ special case of Linear Ordering Problem (NP-c)
• For our costs, optimal face of a known LO relaxation is integral!

Borda-•-Bribery

• Borda’s Rule: give m − 1 points to 1st candidate, m − 2 to 2nd, etc.
• Shift-Bribery∞: easy (LP with O(τm) variables)
• Constructive Control by Adding/Deleting Voters∞: ditto
• Unit cost Swap Bribery∞: easy (reduces to Shift Bribery∞)

• Bribery, $Bribery∞: easy-ish (Configuration LP with easy separation problem)

• LP with τm! variables but m + τ constraints
• Its dual has m + τ vars but many constraints
• Separation =⇒ Optimization
• Here, separation = sorting

• General cost Swap Bribery∞: ...probably hard?
• “Potentials-cost” Swap Bribery∞: ...probably easy?

• costs like “swapping candidates initially at distance k costs k”
• separation problem ≡ special case of Linear Ordering Problem (NP-c)
• For our costs, optimal face of a known LO relaxation is integral!

Borda-•-Bribery

• Borda’s Rule: give m − 1 points to 1st candidate, m − 2 to 2nd, etc.
• Shift-Bribery∞: easy (LP with O(τm) variables)
• Constructive Control by Adding/Deleting Voters∞: ditto
• Unit cost Swap Bribery∞: easy (reduces to Shift Bribery∞)
• Bribery, $Bribery∞: easy-ish (Configuration LP with easy separation problem)

• LP with τm! variables but m + τ constraints
• Its dual has m + τ vars but many constraints
• Separation =⇒ Optimization
• Here, separation = sorting

• General cost Swap Bribery∞: ...probably hard?
• “Potentials-cost” Swap Bribery∞: ...probably easy?

• costs like “swapping candidates initially at distance k costs k”
• separation problem ≡ special case of Linear Ordering Problem (NP-c)
• For our costs, optimal face of a known LO relaxation is integral!

Borda-•-Bribery

• Borda’s Rule: give m − 1 points to 1st candidate, m − 2 to 2nd, etc.
• Shift-Bribery∞: easy (LP with O(τm) variables)
• Constructive Control by Adding/Deleting Voters∞: ditto
• Unit cost Swap Bribery∞: easy (reduces to Shift Bribery∞)
• Bribery, $Bribery∞: easy-ish (Configuration LP with easy separation problem)

• LP with τm! variables but m + τ constraints

• Its dual has m + τ vars but many constraints
• Separation =⇒ Optimization
• Here, separation = sorting

• General cost Swap Bribery∞: ...probably hard?
• “Potentials-cost” Swap Bribery∞: ...probably easy?

• costs like “swapping candidates initially at distance k costs k”
• separation problem ≡ special case of Linear Ordering Problem (NP-c)
• For our costs, optimal face of a known LO relaxation is integral!

Borda-•-Bribery

• Borda’s Rule: give m − 1 points to 1st candidate, m − 2 to 2nd, etc.
• Shift-Bribery∞: easy (LP with O(τm) variables)
• Constructive Control by Adding/Deleting Voters∞: ditto
• Unit cost Swap Bribery∞: easy (reduces to Shift Bribery∞)
• Bribery, $Bribery∞: easy-ish (Configuration LP with easy separation problem)

• LP with τm! variables but m + τ constraints
• Its dual has m + τ vars but many constraints

• Separation =⇒ Optimization
• Here, separation = sorting

• General cost Swap Bribery∞: ...probably hard?
• “Potentials-cost” Swap Bribery∞: ...probably easy?

• costs like “swapping candidates initially at distance k costs k”
• separation problem ≡ special case of Linear Ordering Problem (NP-c)
• For our costs, optimal face of a known LO relaxation is integral!

Borda-•-Bribery

• Borda’s Rule: give m − 1 points to 1st candidate, m − 2 to 2nd, etc.
• Shift-Bribery∞: easy (LP with O(τm) variables)
• Constructive Control by Adding/Deleting Voters∞: ditto
• Unit cost Swap Bribery∞: easy (reduces to Shift Bribery∞)
• Bribery, $Bribery∞: easy-ish (Configuration LP with easy separation problem)

• LP with τm! variables but m + τ constraints
• Its dual has m + τ vars but many constraints
• Separation =⇒ Optimization

• Here, separation = sorting
• General cost Swap Bribery∞: ...probably hard?
• “Potentials-cost” Swap Bribery∞: ...probably easy?

• costs like “swapping candidates initially at distance k costs k”
• separation problem ≡ special case of Linear Ordering Problem (NP-c)
• For our costs, optimal face of a known LO relaxation is integral!

Borda-•-Bribery

• Borda’s Rule: give m − 1 points to 1st candidate, m − 2 to 2nd, etc.
• Shift-Bribery∞: easy (LP with O(τm) variables)
• Constructive Control by Adding/Deleting Voters∞: ditto
• Unit cost Swap Bribery∞: easy (reduces to Shift Bribery∞)
• Bribery, $Bribery∞: easy-ish (Configuration LP with easy separation problem)

• LP with τm! variables but m + τ constraints
• Its dual has m + τ vars but many constraints
• Separation =⇒ Optimization
• Here, separation = sorting

• General cost Swap Bribery∞: ...probably hard?
• “Potentials-cost” Swap Bribery∞: ...probably easy?

• costs like “swapping candidates initially at distance k costs k”
• separation problem ≡ special case of Linear Ordering Problem (NP-c)
• For our costs, optimal face of a known LO relaxation is integral!

Borda-•-Bribery

• Borda’s Rule: give m − 1 points to 1st candidate, m − 2 to 2nd, etc.
• Shift-Bribery∞: easy (LP with O(τm) variables)
• Constructive Control by Adding/Deleting Voters∞: ditto
• Unit cost Swap Bribery∞: easy (reduces to Shift Bribery∞)
• Bribery, $Bribery∞: easy-ish (Configuration LP with easy separation problem)

• LP with τm! variables but m + τ constraints
• Its dual has m + τ vars but many constraints
• Separation =⇒ Optimization
• Here, separation = sorting

• General cost Swap Bribery∞: ...probably hard?

• “Potentials-cost” Swap Bribery∞: ...probably easy?

• costs like “swapping candidates initially at distance k costs k”
• separation problem ≡ special case of Linear Ordering Problem (NP-c)
• For our costs, optimal face of a known LO relaxation is integral!

Borda-•-Bribery

• Borda’s Rule: give m − 1 points to 1st candidate, m − 2 to 2nd, etc.
• Shift-Bribery∞: easy (LP with O(τm) variables)
• Constructive Control by Adding/Deleting Voters∞: ditto
• Unit cost Swap Bribery∞: easy (reduces to Shift Bribery∞)
• Bribery, $Bribery∞: easy-ish (Configuration LP with easy separation problem)

• LP with τm! variables but m + τ constraints
• Its dual has m + τ vars but many constraints
• Separation =⇒ Optimization
• Here, separation = sorting

• General cost Swap Bribery∞: ...probably hard?
• “Potentials-cost” Swap Bribery∞: ...probably easy?

• costs like “swapping candidates initially at distance k costs k”
• separation problem ≡ special case of Linear Ordering Problem (NP-c)
• For our costs, optimal face of a known LO relaxation is integral!

Borda-•-Bribery

• Borda’s Rule: give m − 1 points to 1st candidate, m − 2 to 2nd, etc.
• Shift-Bribery∞: easy (LP with O(τm) variables)
• Constructive Control by Adding/Deleting Voters∞: ditto
• Unit cost Swap Bribery∞: easy (reduces to Shift Bribery∞)
• Bribery, $Bribery∞: easy-ish (Configuration LP with easy separation problem)

• LP with τm! variables but m + τ constraints
• Its dual has m + τ vars but many constraints
• Separation =⇒ Optimization
• Here, separation = sorting

• General cost Swap Bribery∞: ...probably hard?
• “Potentials-cost” Swap Bribery∞: ...probably easy?

• costs like “swapping candidates initially at distance k costs k”

• separation problem ≡ special case of Linear Ordering Problem (NP-c)
• For our costs, optimal face of a known LO relaxation is integral!

Borda-•-Bribery

• Borda’s Rule: give m − 1 points to 1st candidate, m − 2 to 2nd, etc.
• Shift-Bribery∞: easy (LP with O(τm) variables)
• Constructive Control by Adding/Deleting Voters∞: ditto
• Unit cost Swap Bribery∞: easy (reduces to Shift Bribery∞)
• Bribery, $Bribery∞: easy-ish (Configuration LP with easy separation problem)

• LP with τm! variables but m + τ constraints
• Its dual has m + τ vars but many constraints
• Separation =⇒ Optimization
• Here, separation = sorting

• General cost Swap Bribery∞: ...probably hard?
• “Potentials-cost” Swap Bribery∞: ...probably easy?

• costs like “swapping candidates initially at distance k costs k”
• separation problem ≡ special case of Linear Ordering Problem (NP-c)

• For our costs, optimal face of a known LO relaxation is integral!

Borda-•-Bribery

• Borda’s Rule: give m − 1 points to 1st candidate, m − 2 to 2nd, etc.
• Shift-Bribery∞: easy (LP with O(τm) variables)
• Constructive Control by Adding/Deleting Voters∞: ditto
• Unit cost Swap Bribery∞: easy (reduces to Shift Bribery∞)
• Bribery, $Bribery∞: easy-ish (Configuration LP with easy separation problem)

• LP with τm! variables but m + τ constraints
• Its dual has m + τ vars but many constraints
• Separation =⇒ Optimization
• Here, separation = sorting

• General cost Swap Bribery∞: ...probably hard?
• “Potentials-cost” Swap Bribery∞: ...probably easy?

• costs like “swapping candidates initially at distance k costs k”
• separation problem ≡ special case of Linear Ordering Problem (NP-c)
• For our costs, optimal face of a known LO relaxation is integral!

Bottom Line

3 8 4

20% 53% 27%

Discrete Voters Integer Tally Continuous Voter Types Continuous TallyIntractable Problems Fast Algorithms

• Est. half relevant papers study a problem w/ natural continuous analogue

• Rich and non-trivial new complexity landscape
• Opportunity to use new tools (in ComSoC)
• May reveal where hardness is a modeling artifact

Thank You!

Bottom Line

3 8 4

20% 53% 27%

Discrete Voters Integer Tally Continuous Voter Types Continuous TallyIntractable Problems Fast Algorithms

• Est. half relevant papers study a problem w/ natural continuous analogue
• Rich and non-trivial new complexity landscape

• Opportunity to use new tools (in ComSoC)
• May reveal where hardness is a modeling artifact

Thank You!

Bottom Line

3 8 4

20% 53% 27%

Discrete Voters Integer Tally Continuous Voter Types Continuous TallyIntractable Problems Fast Algorithms

• Est. half relevant papers study a problem w/ natural continuous analogue
• Rich and non-trivial new complexity landscape
• Opportunity to use new tools (in ComSoC)

• May reveal where hardness is a modeling artifact

Thank You!

Bottom Line

3 8 4

20% 53% 27%

Discrete Voters Integer Tally Continuous Voter Types Continuous TallyIntractable Problems Fast Algorithms

• Est. half relevant papers study a problem w/ natural continuous analogue
• Rich and non-trivial new complexity landscape
• Opportunity to use new tools (in ComSoC)
• May reveal where hardness is a modeling artifact

Thank You!

Bottom Line

3 8 4

20% 53% 27%

Discrete Voters Integer Tally Continuous Voter Types Continuous TallyIntractable Problems Fast Algorithms

• Est. half relevant papers study a problem w/ natural continuous analogue
• Rich and non-trivial new complexity landscape
• Opportunity to use new tools (in ComSoC)
• May reveal where hardness is a modeling artifact Thank You!

